Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Electrocardiol ; 81: 286-291, 2023.
Article in English | MEDLINE | ID: mdl-37599145

ABSTRACT

INTRODUCTION: A 12­lead electrocardiography (ECG)-based convolutional neural network (CNN) model can detect hypertrophic cardiomyopathy (HCM). However, since these models do not rely on discrete measurements as inputs, it is not apparent what drives their performance. We hypothesized that saliency maps could be used to visually identify ECG segments that contribute to a CNN's robust classification of HCM. METHODS: We derived a new one­lead (lead I) CNN model based on median beats using the same methodology and cohort used for the original 12­lead CNN model (3047 patients with HCM, and 63,926 sex- and age-matched non-HCM controls). One­lead, median-beat saliency maps were generated and visually evaluated in an independent cohort of 100 patients with a diagnosis of HCM and a high artificial intelligence (AI)-ECG-HCM probability score to determine which ECG segments contributed to the model's detection of HCM. RESULTS: The one­lead, median-beat CNN had an AUC of 0.90 (95% CI 0.89-0.92) for HCM detection, similar to the original 12­lead ECG model. In the independent HCM cohort (n = 100), saliency maps highlighted the ST-T segment in 92 ECGs, the atrial depolarization segment in 12 ECGs, and the QRS complex in 5 ECGs. CONCLUSIONS: Saliency maps of a one­lead, median-beat-based CNN model identified perturbations in ventricular repolarization as the main region of interest in detecting HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Electrocardiography , Humans , Electrocardiography/methods , Artificial Intelligence , Cardiomyopathy, Hypertrophic/diagnosis , Neural Networks, Computer , Diagnosis, Computer-Assisted/methods
2.
JACC Adv ; 2(8)2023 Oct.
Article in English | MEDLINE | ID: mdl-38638999

ABSTRACT

BACKGROUND: We have previously applied artificial intelligence (AI) to an electrocardiogram (ECG) to detect cardiac amyloidosis (CA). OBJECTIVES: In this validation study, the authors observe the postdevelopment performance of the AI-enhanced ECG to detect CA with respect to multiple potential confounders. METHODS: Amyloid patients diagnosed after algorithm development (June 2019-January 2022) with a 12-lead ECG were identified (n = 440) and were required to have CA. A 15:1 age- and sex-matched control group was identified (n = 6,600). Area under the receiver operating characteristic (AUC) was determined for the cohort and subgroups. RESULTS: The average age was 70.4 ± 10.3 years, 25.0% were female, and most patients were White (91.3%). In this validation, the AI-ECG for amyloidosis had an AUC of 0.84 (95% CI: 0.82-0.86) for the overall cohort and between amyloid subtypes, which is a slight decrease from the original study (AUC 0.91). White, Black, and patients of "other" races had similar algorithm performance (AUC >0.81) with a decreased performance for Hispanic patients (AUC 0.66). Algorithm performance shift over time was not observed. Low ECG voltage and infarct pattern exhibited high AUC (>0.90), while left ventricular hypertrophy and left bundle branch block demonstrated lesser performance (AUC 0.75 and 0.76, respectively). CONCLUSIONS: The AI-ECG for the detection of CA maintained an overall strong performance with respect to patient age, sex, race, and amyloid subtype. Lower performance was noted in left bundle branch block, left ventricular hypertrophy, and ethnically diverse populations emphasizing the need for subgroup-specific validation efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...