Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(49): e2304049, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37721722

ABSTRACT

Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows the authors to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, the immune cell profile within confined and unconfined biomaterials is studied using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. This work uncovered that MAP scaffolds impart regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds made with large microgels promote a balanced pro-regenerative macrophage response, resulting in enhanced wound healing with mature collagen regeneration and reduced inflammation levels.


Subject(s)
Microgels , Tissue Scaffolds , Biocompatible Materials/pharmacology , Collagen , Wound Healing , Hydrogels
2.
Adv Healthc Mater ; 12(26): e2300823, 2023 10.
Article in English | MEDLINE | ID: mdl-37165945

ABSTRACT

Macrophages are essential in the initiation, maintenance, and transition of inflammatory processes such as foreign body response and wound healing. Mounting evidence suggests that physical factors also modulate macrophage activation. 2D in vitro systems demonstrate that constraining macrophages to small areas or channels modulates their phenotypes and changes their responses to known inflammatory agents such as lipopolysaccharide. However, how dimensionality and pore size affect macrophage phenotype is less explored. In this work, the change in macrophage M1/M2 polarization when confined in microporous annealed particle (MAP) scaffolds is studied. Particles sizes (40, 70, and 130 µm) are selected using outputs from software LOVAMAP that analyzes the characteristics of 3D pores in MAP gels. As the size of building block particle correlates with pore size inside the scaffolds, the three  types of scaffold allow us to study how the degree of spatial confinement modulates the behavior of embedded macrophages. Spatially confining macrophages in scaffolds with pore size on the scale of cells leads to a reduced level of the inflammatory response, which is correlated with a change in cell morphology and motility.


Subject(s)
Macrophages , Tissue Scaffolds , Wound Healing , Biocompatible Materials
3.
bioRxiv ; 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37162980

ABSTRACT

Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows us to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating the macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, we studied the immune cell profile within confined and unconfined biomaterials using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. We discovered that MAP scaffolds imparted regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds generated from 130 µm diameter microgels have a median pore size that can accommodate ∼40 µm diameter spheres induced a more balanced pro-regenerative macrophage response and better wound healing outcomes with more mature collagen regeneration and reduced levels of inflammation.

4.
Adv Sci (Weinh) ; 10(11): e2204882, 2023 04.
Article in English | MEDLINE | ID: mdl-36762570

ABSTRACT

Microporous annealed particle scaffolds (MAPS) are a new class of granular materials generated through the interlinking of tunable microgels, which produce an interconnected network of void space. These microgel building blocks can be designed with different mechanical or bio-active parameters to facilitate cell infiltration and modulate host response. Previously, changing the chirality of the microgel crosslinking peptides from L- to D-amino acids led to significant tissue regeneration and functional recovery in D-MAPS-treated cutaneous wounds. In this study, the immunomodulatory effect of D-MAPS in a subcutaneous implantation model is investigated. How macrophages are the key antigen-presenting cells to uptake and present these biomaterials to the adaptive immune system is uncovered. A robust linker-specific IgG2b/IgG1 response to D-MAPS is detected as early as 14 days post-implantation. The fine balance between pro-regenerative and pro-inflammatory macrophage phenotypes is observed in D-MAPS as an indicator for regenerative scaffolds. The work offers valuable insights into the temporal cellular response to synthetic porous scaffolds and establishes a foundation for further optimization of immunomodulatory pro-regenerative outcomes.


Subject(s)
Microgels , Tissue Scaffolds , Tissue Scaffolds/chemistry , Macrophages , Biocompatible Materials/pharmacology , Phenotype
5.
Environ Toxicol Pharmacol ; 97: 104025, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36460284

ABSTRACT

Welding fumes are classified as carcinogenic to humans. The aim of the present study was to measure buccal micronucleus cytome assay biomarkers and to evaluate their association with inorganic elements and genetic polymorphisms (XRCC1, OGG1, XRCC3, GSTM1, and GSTT1) in welders (n = 98) and control individuals (n = 100). Higher levels of DNA damage and cell death were observed in the exposed group. Also, a significant correlation between the frequency of micronuclei and Na, Si, Cl, Ti, Cr, Zn and Mg concentrations. The formation of micronuclei, binucleated cells, cell death was associated with polymorphisms in repair pathways. The OGG1Ser326Cys and XRCC3 241Thr/Met genotypes were associated with cell death. Individuals with GSTM1 null genotype had a higher frequency of micronuclei. These results demonstrate that the deleterious effects of exposure to welding fumes are exacerbated by lifestyle habits, and genetic polymorphisms can influence DNA damage and cell death.


Subject(s)
Metal Workers , Occupational Exposure , Humans , Occupational Exposure/adverse effects , Micronucleus Tests , Polymorphism, Genetic , DNA Damage , Biomarkers , X-ray Repair Cross Complementing Protein 1
6.
PLoS One ; 15(7): e0232565, 2020.
Article in English | MEDLINE | ID: mdl-32722676

ABSTRACT

In vitro scratch wound healing assay, a simple and low-cost technique that works along with other image analysis tools, is one of the most widely used 2D methods to determine the cellular migration and proliferation in processes such as regeneration and disease. There are open-source programs such as imageJ to analyze images of in vitro scratch wound healing assays, but these tools require manual tuning of various parameters, which is time-consuming and limits image throughput. For that reason, we developed an optimized plugin for imageJ to automatically recognize the wound healing size, correct the average wound width by considering its inclination, and quantify other important parameters such as: area, wound area fraction, average wound width, and width deviation of the wound images obtained from a scratch/ wound healing assay. Our plugin is easy to install and can be used with different operating systems. It can be adapted to analyze both individual images and stacks. Additionally, it allows the analysis of images obtained from bright field, phase contrast, and fluorescence microscopes. In conclusion, this new imageJ plugin is a robust tool to automatically standardize and facilitate quantification of different in vitro wound parameters with high accuracy compared with other tools and manual identification.


Subject(s)
Image Processing, Computer-Assisted/methods , Software , Wound Healing , Cell Line , Cell Movement , Culture Media, Conditioned/pharmacology , Humans , Keratinocytes/drug effects , Mesenchymal Stem Cells/chemistry , Reproducibility of Results , Wound Healing/drug effects
7.
Pharmaceutics ; 12(7)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640506

ABSTRACT

Current treatments against bacterial infections have severe limitations, mainly due to the emergence of resistance to conventional antibiotics. In the specific case of Pseudomonas aeruginosa strains, they have shown a number of resistance mechanisms to counter most antibiotics. Human secretory RNases from the RNase A superfamily are proteins involved in a wide variety of biological functions, including antimicrobial activity. The objective of this work was to explore the intracellular antimicrobial action of an RNase 3/1 hybrid protein that combines RNase 1 high catalytic and RNase 3 bactericidal activities. To achieve this, we immobilized the RNase 3/1 hybrid on Polyetheramine (PEA)-modified magnetite nanoparticles (MNPs). The obtained nanobioconjugates were tested in macrophage-derived THP-1 cells infected with Pseudomonas aeruginosa PAO1. The obtained results show high antimicrobial activity of the functionalized hybrid protein (MNP-RNase 3/1) against the intracellular growth of P. aeruginosa of the functionalized hybrid protein. Moreover, the immobilization of RNase 3/1 enhances its antimicrobial and cell-penetrating activities without generating any significant cell damage. Considering the observed antibacterial activity, the immobilization of the RNase A superfamily and derived proteins represents an innovative approach for the development of new strategies using nanoparticles to deliver antimicrobials that counteract P. aeruginosa intracellular infection.

8.
ACS Biomater Sci Eng ; 6(1): 415-424, 2020 01 13.
Article in English | MEDLINE | ID: mdl-33463215

ABSTRACT

Outer membrane protein A (OmpA) has been extensively studied in Gram-negative bacteria due to its relevance in the adhesion of pathogens to host cells and its surfactant capabilities. It consists of a hydrophobic ß-barrel domain and a hydrophilic periplasmic domain, that confers OmpA an amphiphilic structure. This study aims to elucidate the capacity of Escherichia coli OmpA to translocate liposomal membranes and serve as a potential cell-penetrating vehicle. We immobilized OmpA on magnetite nanoparticles and investigated the possible functional changes exhibited by OmpA after immobilization. Liposomal intake was addressed using egg lecithin liposomes as a model, where magnetite-OmpA nanobioconjugates were able to translocate the liposomal membrane and caused a disruptive effect when subjected to a magnetic field. Nanobioconjugates showed both low cytotoxicity and hemolytic tendency. Additional interactions within the intracellular space led to altered viability results via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Confocal microscopy images revealed that immobilized nanoparticles effectively enter the cytoplasm of THP-1 and Vero cells by different routes, and, subsequently, some escape endosomes, lysosomes, and other intracellular compartments with relatively high efficiencies. This was demonstrated by co-localization analyses with LysoTracker green that showed Pearson correlations of about 80 and 28%.


Subject(s)
Bacterial Outer Membrane Proteins , Ferrosoferric Oxide , Animals , Chlorocebus aethiops , Endosomes , Vero Cells
9.
Ann Biomed Eng ; 48(7): 2064-2077, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31617045

ABSTRACT

Cancer is one of the leading causes of death both in the United States and worldwide. The dynamic microenvironment in which tumors grow consists of fibroblasts, immune cells, extracellular matrix (ECM), and cytokines that enable progression and metastasis. Novel biomaterials that mimic these complex surroundings give insight into the biological, chemical, and physical environment that cause cancer cells to metastasize and invade into other tissues. Two-dimensional (2D) cultures are useful for gaining limited information about cancer cell behavior; however, they do not accurately represent the environments that cells experience in vivo. Recent advances in the design and tunability of diverse three-dimensional (3D) biomaterials complement biological knowledge and allow for improved recapitulation of in vivo conditions. Understanding cell-ECM and cell-cell interactions that facilitate tumor survival will accelerate the design of more effective therapies. This review discusses innovative materials currently being used to study tumor and immune cell behavior and interactions, including materials that mimic the ECM composition, mechanical stiffness, and integrin binding sites of the tumor microenvironment.


Subject(s)
Biomimetic Materials , Cell Communication , Macrophages/cytology , Tumor Microenvironment , Animals , Cell Culture Techniques , Extracellular Matrix , Fibroblasts/cytology , Humans , Integrins , Neoplasms/immunology , Organoids , Spheroids, Cellular
10.
Int J Nanomedicine ; 14: 8483-8497, 2019.
Article in English | MEDLINE | ID: mdl-31695376

ABSTRACT

INTRODUCTION: Controlled delivery of therapeutic molecules in a localized manner has become an area of interest due to its potential to reduce drug exposure to healthy tissues and consequently to minimize undesirable side effects. We have recently introduced novel cell-penetrating vehicles by immobilizing the antimicrobial peptide Buforin II (BUF-II) on magnetite nanoparticles (MPNPs). Despite the potent translocating abilities of such nanobioconjugates, they failed to preserve the antimicrobial activity of native BUF-II. In this work, we explored immobilization on MNPs with the aid of polymer surface spacers, which has been considered as an attractive alternative for the highly efficient conjugation of various biomolecules. METHODS: Here, we immobilized BUF-II on polyetheramine-modified magnetite nanoparticles to preserve its structural integrity. As a result, for the obtained nanobioconjugates the lost antimicrobial activity against gram-positive and gram-negative bacteria was only 50% with respect to the native BUF-II. The nanobioconjugates were also characterized via FTIR, DLS, TEM, and TGA. Delivery on THP-1, HaCaT, HFF, and Escherichia coli cells was conducted to confirm capability for cell membrane translocation. RESULTS: Colocalization with Lysotracker showed an endosomal escape efficiency of about 73∓12% in THP-1 cells. Avoidance of endocytic pathways of internalization was qualitatively confirmed by a delivery assay at low temperature. Nuclear penetration of the nanobioconjugates was corroborated via confocal microscopy and showed high biocompatibility as demonstrated by hemolysis levels below 5% and acute cytotoxicity of around 15%. CONCLUSION: The obtained nanobioconjugates were capable of translocating the cell membrane and nuclei of different normal and cancerous cell lines without significantly decreasing viability. This makes the vehicle addressable for a number of applications ranging from antimicrobial topical treatments to the delivery of nucleotides and therapeutic molecules with difficulties to bypass cell membranes.


Subject(s)
Amines/chemistry , Anti-Bacterial Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Magnetite Nanoparticles/chemistry , Nanoconjugates/chemistry , Proteins/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials/pharmacology , Cell Line , Cell Membrane/drug effects , Cell-Penetrating Peptides/chemistry , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Hemolysis/drug effects , Humans , Magnetite Nanoparticles/ultrastructure , Proteins/chemistry
11.
Anal Biochem ; 574: 31-33, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30905690

ABSTRACT

We have developed a protocol to produce three-dimensional matrices based on alginate hydrogels for mammalian cell encapsulation. Based on the gelation properties of this polysaccharide, we implemented a calcium ion-based diffusion method where the designed hydrogels can be obtained with well-defined mechanical properties and replicable 3D topologies. The developed protocol can be extended to different types of alginates and an ample range of concentrations. This makes it very attractive for various biomedical applications where strict control over structure-function relationships is desirable.


Subject(s)
Alginates/chemistry , Cell Encapsulation , Animals , Biocompatible Materials , Hydrogels , Mammals , Structure-Activity Relationship
12.
Int J Nanomedicine ; 13: 8087-8094, 2018.
Article in English | MEDLINE | ID: mdl-30568447

ABSTRACT

INTRODUCTION: One of the major challenges of modern pharmacology is the development of systems for the delivery of therapeutic molecules in a controlled and localized manner. One strategy is to use nanostructured supports, which are well suited to carry a large number of molecules on a per mass basis. A major challenge for these supports is, however, their limited ability to bypass the cell membrane. Recent studies propose that to overcome this issue, potent translocating cell-penetrating peptides (CPPs) can be conjugated to their surfaces. METHODS: Here, we conjugated the antimicrobial CPP buforin II (BUF2) to the surface of magnetite nanoparticles to enhance their cell penetration. Conjugates were characterized via Fourier transform infrared spectroscopy, dynamic light scattering, and thermogravimetric analysis, and their biocompatibility was corroborated. The conjugates were delivered in both bacterial and mammalian cells demonstrating the intracellular inclusion in THP-1 cells for the first time. RESULTS: Despite the promising outcome, our studies showed that the obtained conjugates failed to maintain the native antimicrobial activity of BUF2. We hypothesize that to overcome this issue, a flexible linker can be inserted prior to conjugation. CONCLUSION: Our study highlights the potential of BUF2-magnetite conjugates as cell-penetrating vehicles for the targeted delivery of pharmacological agents. This provides support for the idea of a promising combined drug delivery and antimicrobial peptide therapy.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Ferrosoferric Oxide/chemistry , Nanoconjugates/chemistry , Proteins/pharmacology , Amino Acid Sequence , Animals , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Cell-Penetrating Peptides/chemistry , Chlorocebus aethiops , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Proteins/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...