Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676071

ABSTRACT

Thermal simulations have become increasingly popular in assessing energy efficiency and predicting thermal behaviors in various structures. Calibration of these simulations is essential for accurate predictions. A crucial aspect of this calibration involves investigating the influence of meteorological variables. This study aims to explore the impact of meteorological variables on thermal simulations, particularly focusing on ships. Using TRNSYS (TRaNsient System Simulation) software (v17), renowned for its capability to model complex energy systems within buildings, the significance of incorporating meteorological data into thermal simulations was analyzed. The investigation centered on a patrol vessel stationed in a port in Galicia, northwest Spain. To ensure accuracy, we not only utilized the vessel's dimensions but also conducted in situ temperature measurements onboard. Furthermore, a dedicated weather station was installed to capture real-time meteorological data. Data from multiple sources, including Meteonorm and MeteoGalicia, were collected for comparative analysis. By juxtaposing simulations based on meteorological variables against those relying solely on in situ measurements, we sought to discern the relative merits of each approach in enhancing the fidelity of thermal simulations.

2.
Sensors (Basel) ; 23(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-37050448

ABSTRACT

Systems engineering plays a key role in the naval sector, focusing on how to design, integrate, and manage complex systems throughout their life cycle; it is therefore difficult to conceive functional warships without it. To this end, specialized information systems for logistical support and the sustainability of material solutions are essential to ensure proper provisioning and to know the operational status of the frigate. However, based on an architecture composed of a set of logistics applications, this information system may require highly qualified operators with a deep knowledge of the behavior of onboard systems to manage it properly. In this regard, failure detection systems have been postulated as one of the main cutting-edge methods to address the challenge, employing intelligent techniques for observing anomalies in the normal behavior of systems without the need for expert knowledge. In this paper, the study is concerned to the scope of the Spanish navy, where a complex information system structure is responsible for ensuring the correct maintenance and provisioning of the vessels. In such context, we hereby suggest a comparison between different one-class techniques, such as statistical models, geometric boundaries, or dimensional reduction to face anomaly detection in specific subsystems of a warship, with the prospect of applying it to the whole ship.

3.
Sensors (Basel) ; 22(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36236201

ABSTRACT

Natural illumination has an important place in home automation applications. Among other advantages, it contributes to better visual health, energy savings, and lower CO2 emissions. Therefore, it is important to measure illuminance in the most accurate and cost-effective way. This work compares several low-cost commercial sensors (VEML 7700, TSL2591, and OPT3001) with a professional one (ML-020S-O), all of them installed outdoors. In addition, a platform based on the Internet of Things technology was designed and deployed as a centralized point of data collection and processing. Summer months have been chosen for the comparison. This is the most adverse situation for low-cost sensors since they are designed for indoor use, and their operating range is lower than the maximum reached by sunlight. The solar illuminance was recorded every minute. As expected, the obtained bias depends on the solar height. This can reach 60% in the worst circumstances, although most of the time, its value stays below 40%. The positive side lies in the good precision of the recordings. This systematic deviation makes it susceptible to mathematical correction. Therefore, the incorporation of more sensors and data that can help the global improvement of the precision and accuracy of this low-cost system is left as a future line of improvement.


Subject(s)
Benchmarking , Internet of Things , Carbon Dioxide
4.
Materials (Basel) ; 15(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36234308

ABSTRACT

Thermal comfort is essential when wearing a postural-corrective garment. Discomfort of any kind may deter regular use and prolong user recovery time. The objective of this work is therefore to optimize a new compound that can alter the temperature of orthopedic insoles, thereby improving the thermal comfort for the user. Its novelty is a resin composite that contains a thermoregulatory Phase-Change Material (PCM). An experimental design was used to optimize the proportions of PCM, epoxy resin, and thickener in the composite and its effects. A Box-Behnken factor design was applied to each compound to establish the optimal proportions of all three substances. The dependent variables were the Shore A and D hardness tests and thermogravimetric heat-exchange measurements. As was foreseeable, the influence of the PCM on the thermal absorption levels of the compound was quantifiable and could be determined from the results of the factor design. Likewise, compound hardness was determined by resin type and resin-PCM interactions, so the quantity of PCM also had some influence on the mechanical properties of the composite. Both the durability and the flexibility of the final product complied with current standards for orthopedic insoles.

5.
Materials (Basel) ; 15(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36143539

ABSTRACT

Concern about the harmful effects that ultraviolet (UV) rays have on the skin of people who are routinely exposed to solar radiation has driven the industry of skin protection creams, sunglasses and clothing. Spanish Navy personnel are subject to different levels of exposure depending on their rank and function. The objective of this research is to analyze the behavioral variables associated to the effects on the skin caused by UV rays, denoted by the combined effects of perceived susceptibility and perceived severity, on their decision to purchase and wear uniforms with UV protection. A confirmatory analysis using a structural equation modeling (SEM) was performed on a sample of 100 respondents. The model results revealed a strong mediating characteristic of the intention to use, variable associated with the exogenous variables. Attitude towards the use of clothing and social influence, as well as the exogenous variable clothing action planning, on the sun protective clothing use during tactical maneuvers. These relationships were significant with p-values close to zero. However, exogenous variables related to perceived susceptibility and perceived severity in exposure to sunlight did not represent a significant influence when mediated by self-efficacy in use. The results revealed the consequence of awareness about the importance of protecting oneself and the influence that usage habits can have on the military with respect to the decision to purchase uniforms with UV protection.

6.
Materials (Basel) ; 12(21)2019 Oct 27.
Article in English | MEDLINE | ID: mdl-31717837

ABSTRACT

Composite materials have great potential for growth due to their excellent properties and their multiple applications. The study of the thermal properties of the new composites resulting from the combination of epoxy resin and phase change materials (PCM), as well as thickening agents and thermally conductive compounds, was the objective of this work. For this purpose, different samples were manufactured by combining epoxy resins, organic PCMs (paraffins), and aluminum particles. Several properties were analyzed: thermal behavior (by differential scanning calorimetry technique), hardness, etc. To carry out this analysis, parameters of PCM quantity and metallic particles in the composition were varied. The results showed that the epoxy resin acted as a matrix containing the rest of the components and encapsulating the PCM. The organic PCM showed reversibility when subjected to multiple cycles. The enthalpy of the organic PCM-resin compound varied linearly according to the PCM content in the sample. For the content of this material in the samples to reach up to 40%, the use of thickening agents was necessary. The use of metallic particles improved the conductivity of the composites even while maintaining a low percentage by weight of metallic particles. Thermal simulations of the composite in bottom-coating a photovoltaic panel estimated a reduction of several degrees Celsius, showing the potential use of the PCM-epoxy resin for improving the energy production of such panels.

7.
Data Brief ; 25: 104294, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31497629

ABSTRACT

This data article employs the Fuzzy Analytic Hierarchy Process (FAHP) to perform the project risk assessment in a phase of the construction of a large hydroelectric project. The list of service packs and risk events was extracted from in-depth interviews and content analysis with experts. Such qualitative data were used to identify the relevant service pack and risk event indicators for two groups - the owner's and the builder's representatives - required to specify the model. FAHP was used to calculate the relative importance of such indicators in two stages. First the relevance of the service packs was measured through paired comparisons and then weighted. Next, the relevance of the risk events associated with each service pack was assessed through the same method. A complete method of calculation for one of the respondents is presented. At the end, the average weights for the risk events of the two groups are calculated. For further information it is recommended to read the article entitled "Multi-criteria risk assessment: Case study of a large hydroelectric project" (Ribas et al., 2019).

8.
Materials (Basel) ; 11(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29373538

ABSTRACT

This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...