Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 150, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807192

ABSTRACT

BACKGROUND: Ovarian cancer has a high mortality rate mainly due to its resistance to currently used therapies. This resistance has been associated with the presence of cancer stem cells (CSCs), interactions with the microenvironment, and intratumoral heterogeneity. Therefore, the search for new therapeutic targets, particularly those targeting CSCs, is important for improving patient prognosis. HOOK1 has been found to be transcriptionally altered in a substantial percentage of ovarian tumors, but its role in tumor initiation and development is still not fully understood. METHODS: The downregulation of HOOK1 was performed in ovarian cancer cell lines using CRISPR/Cas9 technology, followed by growth in vitro and in vivo assays. Subsequently, migration (Boyden chamber), cell death (Western-Blot and flow cytometry) and stemness properties (clonal heterogeneity analysis, tumorspheres assay and flow cytometry) of the downregulated cell lines were analysed. To gain insights into the specific mechanisms of action of HOOK1 in ovarian cancer, a proteomic analysis was performed, followed by Western-blot and cytotoxicity assays to confirm the results found within the mass spectrometry. Immunofluorescence staining, Western-blotting and flow cytometry were also employed to finish uncovering the role of HOOK1 in ovarian cancer. RESULTS: In this study, we observed that reducing the levels of HOOK1 in ovarian cancer cells reduced in vitro growth and migration and prevented tumor formation in vivo. Furthermore, HOOK1 reduction led to a decrease in stem-like capabilities in these cells, which, however, did not seem related to the expression of genes traditionally associated with this phenotype. A proteome study, along with other analysis, showed that the downregulation of HOOK1 also induced an increase in endoplasmic reticulum stress levels in these cells. Finally, the decrease in stem-like properties observed in cells with downregulated HOOK1 could be explained by an increase in cell death in the CSC population within the culture due to endoplasmic reticulum stress by the unfolded protein response. CONCLUSION: HOOK1 contributes to maintaining the tumorigenic and stemness properties of ovarian cancer cells by preserving protein homeostasis and could be considered an alternative therapeutic target, especially in combination with inducers of endoplasmic reticulum or proteotoxic stress such as proteasome inhibitors.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Neoplastic Stem Cells , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Cell Line, Tumor , Proteostasis , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Cell Proliferation , Cell Movement
2.
J Exp Clin Cancer Res ; 42(1): 55, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36864434

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that affect different anatomical locations. Despite this heterogeneity, HNSCC treatment depends on the anatomical location, TNM stage and resectability of the tumor. Classical chemotherapy is based on platinum-derived drugs (cisplatin, carboplatin and oxaliplatin), taxanes (docetaxel, paclitaxel) and 5-fluorouracil1. Despite advances in HNSCC treatment, the rate of tumor recurrence and patient mortality remain high. Therefore, the search for new prognostic identifiers and treatments targeting therapy-resistant tumor cells is vital. Our work demonstrates that there are different subgroups with high phenotypic plasticity within the CSC population in HNSCC. CD10, CD184, and CD166 may identify some of these CSC subpopulations with NAMPT as a common metabolic gene for the resilient cells of these subpopulations. We observed that NAMPT reduction causes a decrease in tumorigenic and stemness properties, migration capacity and CSC phenotype through NAD pool depletion. However, NAMPT-inhibited cells can acquire resistance by activating the NAPRT enzyme of the Preiss-Handler pathway. We observed that coadministration of the NAMPT inhibitor with the NAPRT inhibitor cooperated inhibiting tumor growth. The use of an NAPRT inhibitor as an adjuvant improved NAMPT inhibitor efficacy and reduced the dose and toxicity of these inhibitors. Therefore, it seems that the reduction in the NAD pool could have efficacy in tumor therapy. This was confirmed by in vitro assays supplying the cells with products of inhibited enzymes (NA, NMN or NAD) and restoring their tumorigenic and stemness properties. In conclusion, the coinhibition of NAMPT and NAPRT improved the efficacy of antitumor treatment, indicating that the reduction in the NAD pool is important to prevent tumor growth.


Subject(s)
Head and Neck Neoplasms , NAD , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Neoplasm Recurrence, Local , Head and Neck Neoplasms/drug therapy , Neoplastic Stem Cells , Carcinogenesis
3.
Cell Biosci ; 12(1): 39, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365227

ABSTRACT

In nature, cells reside in tissues subject to complex cell-cell interactions, signals from extracellular molecules and niche soluble and mechanical signaling. These microenvironment interactions are responsible for cellular phenotypes and functions, especially in normal settings. However, in 2D cultures, where interactions are limited to the horizontal plane, cells are exposed uniformly to factors or drugs; therefore, this model does not reconstitute the interactions of a natural microenvironment. 3D culture systems more closely resemble the architectural and functional properties of in vivo tissues. In these 3D cultures, the cells are exposed to different concentrations of nutrients, growth factors, oxygen or cytotoxic agents depending on their localization and communication. The 3D architecture also differentially alters the physiological, biochemical, and biomechanical properties that can affect cell growth, cell survival, differentiation and morphogenesis, cell migration and EMT properties, mechanical responses and therapy resistance. This latter point may, in part, explain the failure of current therapies and affect drug discovery research. Organoids are a promising 3D culture system between 2D cultures and in vivo models that allow the manipulation of signaling pathways and genome editing of cells in a body-like environment but lack the many disadvantages of a living system. In this review, we will focus on the role of stem cells in the establishment of organoids and the possible therapeutic applications of this model, especially in the field of cancer research.

4.
Front Oncol ; 10: 1533, 2020.
Article in English | MEDLINE | ID: mdl-32984007

ABSTRACT

The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.

5.
Mol Cancer ; 19(1): 7, 2020 01 11.
Article in English | MEDLINE | ID: mdl-31926547

ABSTRACT

BACKGROUND: Ovarian cancer is one of the most common and malignant cancers, partly due to its late diagnosis and high recurrence. Chemotherapy resistance has been linked to poor prognosis and is believed to be linked to the cancer stem cell (CSC) pool. Therefore, elucidating the molecular mechanisms mediating therapy resistance is essential to finding new targets for therapy-resistant tumors. METHODS: shRNA depletion of MYPT1 in ovarian cancer cell lines, miRNA overexpression, RT-qPCR analysis, patient tumor samples, cell line- and tumorsphere-derived xenografts, in vitro and in vivo treatments, analysis of data from ovarian tumors in public transcriptomic patient databases and in-house patient cohorts. RESULTS: We show that MYPT1 (PPP1R12A), encoding myosin phosphatase target subunit 1, is downregulated in ovarian tumors, leading to reduced survival and increased tumorigenesis, as well as resistance to platinum-based therapy. Similarly, overexpression of miR-30b targeting MYPT1 results in enhanced CSC-like properties in ovarian tumor cells and is connected to the activation of the Hippo pathway. Inhibition of the Hippo pathway transcriptional co-activator YAP suppresses the resistance to platinum-based therapy induced by either low MYPT1 expression or miR-30b overexpression, both in vitro and in vivo. CONCLUSIONS: Our work provides a functional link between the resistance to chemotherapy in ovarian tumors and the increase in the CSC pool that results from the activation of the Hippo pathway target genes upon MYPT1 downregulation. Combination therapy with cisplatin and YAP inhibitors suppresses MYPT1-induced resistance, demonstrating the possibility of using this treatment in patients with low MYPT1 expression, who are likely to be resistant to platinum-based therapy.


Subject(s)
Biomarkers, Tumor/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Humans , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Prognosis , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
J Exp Clin Cancer Res ; 38(1): 234, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31159852

ABSTRACT

BACKGROUND: Ovarian cancer is the leading cause of gynecologic cancer-related death, due in part to a late diagnosis and a high rate of recurrence. Primary and acquired platinum resistance is related to a low response probability to subsequent lines of treatment and to a poor survival. Therefore, a comprehensive understanding of the mechanisms that drive platinum resistance is urgently needed. METHODS: We used bioinformatics analysis of public databases and RT-qPCR to quantitate the relative gene expression profiles of ovarian tumors. Many of the dysregulated genes were cancer stem cell (CSC) factors, and we analyzed its relation to therapeutic resistance in human primary tumors. We also performed clustering and in vitro analyses of therapy cytotoxicity in tumorspheres. RESULTS: Using bioinformatics analysis, we identified transcriptional targets that are common endpoints of genetic alterations linked to platinum resistance in ovarian tumors. Most of these genes are grouped into 4 main clusters related to the CSC phenotype, including the DNA damage, Notch and C-KIT/MAPK/MEK pathways. The relative expression of these genes, either alone or in combination, is related to prognosis and provide a connection between platinum resistance and the CSC phenotype. However, the expression of the CSC-related markers was heterogeneous in the resistant tumors, most likely because there were different CSC pools. Furthermore, our in vitro results showed that the inhibition of the CSC-related targets lying at the intersection of the DNA damage, Notch and C-KIT/MAPK/MEK pathways sensitize CSC-enriched tumorspheres to platinum therapies, suggesting a new option for the treatment of patients with platinum-resistant ovarian cancer. CONCLUSIONS: The current study presents a new approach to target the physiology of resistant ovarian tumor cells through the identification of core biomarkers. We hypothesize that the identified mutations confer platinum resistance by converging to activate a few pathways and to induce the expression of a few common, measurable and targetable essential genes. These pathways include the DNA damage, Notch and C-KIT/MAPK/MEK pathways. Finally, the combined inhibition of one of these pathways with platinum treatment increases the sensitivity of CSC-enriched tumorspheres to low doses of platinum, suggesting a new treatment for ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/genetics , Platinum/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Decision-Making , Disease Management , Female , Humans , Kaplan-Meier Estimate , Molecular Diagnostic Techniques , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/mortality , Prognosis , Proportional Hazards Models , Treatment Outcome
7.
Oncotarget ; 9(68): 32958-32971, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30250642

ABSTRACT

Rectal cancer represents approximately 10% of cancers worldwide. Preoperative chemoradiotherapy increases complete pathologic response and local control, although it offers a poor advantage in survivorship and sphincter saving compared with that of radiotherapy alone. After preoperative chemoradiotherapy, approximately 20% of patients with rectal cancer achieve a pathologic complete response to the removed surgical specimen; this response may be related to a better prognosis and an improvement in disease-free survival. However, better biomarkers to predict response and new targets are needed to stratify patients and obtain better response rates. MAP17 (PDZK1IP1) is a small, 17 kDa non-glycosylated membrane protein located in the plasma membrane and Golgi apparatus and is overexpressed in a wide variety of human carcinomas. MAP17 has been proposed as a predictive biomarker for reactive oxygen species, ROS, inducing treatments in cervical tumors or laryngeal carcinoma. Due to the increase in ROS, MAP17 is also associated with the marker of DNA damage, phosphoH2AX (pH2AX). In the present manuscript, we examined the values of MAP17 and pH2AX as surrogate biomarkers of the response in rectal tumors. MAP17 expression after preoperative chemoradiotherapy is able to predict the response to chemoradiotherapy, similar to the increase in pH2AX. Furthermore, we explored whether we can identify molecular targeted therapies that could help improve the response of these tumors to radiotherapy. In this sense, we found that the inhibition of DNA damage with olaparib increased the response to radio- and chemotherapy, specifically in tumors with high levels of pH2AX and MAP17.

SELECTION OF CITATIONS
SEARCH DETAIL
...