Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Genet Sel Evol ; 56(1): 40, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773423

ABSTRACT

BACKGROUND: Livestock populations are under constant selective pressure for higher productivity levels for different selective purposes. This pressure results in the selection of animals with unique adaptive and production traits. The study of genomic regions associated with these unique characteristics has the potential to improve biological knowledge regarding the adaptive process and how it is connected to production levels and resilience, which is the ability of an animal to adapt to stress or an imbalance in homeostasis. Sheep is a species that has been subjected to several natural and artificial selective pressures during its history, resulting in a highly specialized species for production and adaptation to challenging environments. Here, the data from multiple studies that aim at mapping selective sweeps across the sheep genome associated with production and adaptation traits were integrated to identify confirmed selective sweeps (CSS). RESULTS: In total, 37 studies were used to identify 518 CSS across the sheep genome, which were classified as production (147 prodCSS) and adaptation (219 adapCSS) CSS based on the frequency of each type of associated study. The genes within the CSS were associated with relevant biological processes for adaptation and production. For example, for adapCSS, the associated genes were related to the control of seasonality, circadian rhythm, and thermoregulation. On the other hand, genes associated with prodCSS were related to the control of feeding behaviour, reproduction, and cellular differentiation. In addition, genes harbouring both prodCSS and adapCSS showed an interesting association with lipid metabolism, suggesting a potential role of this process in the regulation of pleiotropic effects between these classes of traits. CONCLUSIONS: The findings of this study contribute to a deeper understanding of the genetic link between productivity and adaptability in sheep breeds. This information may provide insights into the genetic mechanisms that underlie undesirable genetic correlations between these two groups of traits and pave the way for a better understanding of resilience as a positive ability to respond to environmental stressors, where the negative effects on production level are minimized.


Subject(s)
Adaptation, Physiological , Genome , Selection, Genetic , Animals , Adaptation, Physiological/genetics , Sheep/genetics , Sheep/physiology , Phenotype , Quantitative Trait Loci
2.
BMC Genomics ; 24(1): 383, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422635

ABSTRACT

BACKGROUND: Biological mechanisms affecting gametogenesis, embryo development and postnatal viability have the potential to alter Mendelian inheritance expectations resulting in observable transmission ratio distortion (TRD). Although the discovery of TRD cases have been around for a long time, the current widespread and growing use of DNA technologies in the livestock industry provides a valuable resource of large genomic data with parent-offspring genotyped trios, enabling the implementation of TRD approach. In this research, the objective is to investigate TRD using SNP-by-SNP and sliding windows approaches on 441,802 genotyped Holstein cattle and 132,991 (or 47,910 phased) autosomal SNPs. RESULTS: The TRD was characterized using allelic and genotypic parameterizations. Across the whole genome a total of 604 chromosomal regions showed strong significant TRD. Most (85%) of the regions presented an allelic TRD pattern with an under-representation (reduced viability) of carrier (heterozygous) offspring or with the complete or quasi-complete absence (lethality) for homozygous individuals. On the other hand, the remaining regions with genotypic TRD patterns exhibited the classical recessive inheritance or either an excess or deficiency of heterozygote offspring. Among them, the number of most relevant novel regions with strong allelic and recessive TRD patterns were 10 and 5, respectively. In addition, functional analyses revealed candidate genes regulating key biological processes associated with embryonic development and survival, DNA repair and meiotic processes, among others, providing additional biological evidence of TRD findings. CONCLUSIONS: Our results revealed the importance of implementing different TRD parameterizations to capture all types of distortions and to determine the corresponding inheritance pattern. Novel candidate genomic regions containing lethal alleles and genes with functional and biological consequences on fertility and pre- and post-natal viability were also identified, providing opportunities for improving breeding success in cattle.


Subject(s)
Embryonic Development , Inheritance Patterns , Animals , Cattle/genetics , Genotype , Heterozygote , Alleles
3.
Front Vet Sci ; 10: 1150996, 2023.
Article in English | MEDLINE | ID: mdl-37255997

ABSTRACT

Introduction: Suckling lamb meat is highly appreciated in European Mediterranean countries because of its mild flavor and soft texture. In suckling lamb carcasses, perirenal and pelvic fat depots account for a large fraction of carcass fat accumulation, and their proportions are used as an indicator of carcass quality. Material and Methods: This study aimed to characterize the genetic mechanisms that regulate fat deposition in suckling lambs by evaluating the transcriptomic differences between Spanish Assaf lambs with significantly different proportions of kidney knob and channel fat (KKCF) depots in their carcasses (4 High-KKCF lambs vs. 4 Low-KKCF lambs). Results: The analyzed fat tissue showed overall dominant expression of white adipose tissue gene markers, although due to the young age of the animals (17-36 days), the expression of some brown adipose tissue gene markers (e.g., UCP1, CIDEA) was still identified. The transcriptomic comparison between the High-KKCF and Low-KKCF groups revealed a total of 80 differentially expressed genes (DEGs). The enrichment analysis of the 49 DEGs with increased expression levels in the Low-KKCF lambs identified significant terms linked to the biosynthesis of lipids and thermogenesis, which may be related to the higher expression of the UCP1 gene in this group. In contrast, the enrichment analysis of the 31 DEGs with increased expression in the High-KKCF lambs highlighted angiogenesis as a key biological process supported by the higher expression of some genes, such as VEGF-A and THBS1, which encode a major angiogenic factor and a large adhesive extracellular matrix glycoprotein, respectively. Discussion: The increased expression of sestrins, which are negative regulators of the mTOR complex, suggests that the preadipocyte differentiation stage is being inhibited in the High-KKCF group in favor of adipose tissue expansion, in which vasculogenesis is an essential process. All of these results suggest that the fat depots of the High-KKCF animals are in a later stage of development than those of the Low-KKCF lambs. Further genomic studies based on larger sample sizes and complementary analyses, such as the identification of polymorphisms in the DEGs, should be designed to confirm these results and achieve a deeper understanding of the genetic mechanisms underlying fat deposition in suckling lambs.

4.
Res Vet Sci ; 159: 57-65, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37084523

ABSTRACT

This study evaluated the influence of a temporary nutritional protein restriction (NPR) performed, under commercial conditions, in prepubertal female lambs on first lactation milk production traits and the inflammatory response triggered by an inflammatory challenge of the. From 40 Assaf female lambs, we defined a control group (Cn = 20), which received a standard diet for replacement lambs and the NPR group (n = 20), which received the same diet but without soybean meal between 3 and 5 months of age. About 150 days after lambing, 24 of these ewes (13 NPR, 11C) were subjected to an intramammary infusion of E. coli lipopolysaccharide (LPS). Our dynamic study identified indicator traits of local (SCC) and systemic (rectal Ta, IL-6, CXCL8, IL-10, IL-36RA, VEGF-A) response to the LPS challenge. The NPR did not show significant effects on milk production traits and did not affect the SCC and rectal Ta after the LPS challenge. However, the NPR had a significant influence on 8 of the 14 plasma biomarkers analysed, in all the cases with higher relative values in the C group. The effects observed on VEGF-A (involved in vasculogenesis during mammary gland development and vascular permeability) and IL-10 (a regulatory cytokine classically known by its anti-inflammatory action) are the most remarkable to explain the differences found between groups. Whereas further studies should be undertaken to confirm these results, our findings are of interest considering the current concern about the future world's demand for protein and the need for animal production systems to evolve toward sustainability.


Subject(s)
Interleukin-10 , Milk , Animals , Sheep , Female , Milk/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Escherichia coli , Vascular Endothelial Growth Factor A/metabolism , Lactation/physiology , Sheep, Domestic , Dietary Proteins/metabolism
5.
Front Vet Sci ; 10: 1122953, 2023.
Article in English | MEDLINE | ID: mdl-37077950

ABSTRACT

Introduction: As higher feed efficiency in dairy ruminants means a higher capability to transform feed nutrients into milk and milk components, differences in feed efficiency are expected to be partly linked to changes in the physiology of the mammary glands. Therefore, this study aimed to determine the biological functions and key regulatory genes associated with feed efficiency in dairy sheep using the milk somatic cell transcriptome. Material and methods: RNA-Seq data from high (H-FE, n = 8) and low (L-FE, n = 8) feed efficiency ewes were compared through differential expression analysis (DEA) and sparse Partial Least Square-Discriminant analysis (sPLS-DA). Results: In the DEA, 79 genes were identified as differentially expressed between both conditions, while the sPLS-DA identified 261 predictive genes [variable importance in projection (VIP) > 2] that discriminated H-FE and L-FE sheep. Discussion: The DEA between sheep with divergent feed efficiency allowed the identification of genes associated with the immune system and stress in L-FE animals. In addition, the sPLS-DA approach revealed the importance of genes involved in cell division (e.g., KIF4A and PRC1) and cellular lipid metabolic process (e.g., LPL, SCD, GPAM, and ACOX3) for the H-FE sheep in the lactating mammary gland transcriptome. A set of discriminant genes, commonly identified by the two statistical approaches, was also detected, including some involved in cell proliferation (e.g., SESN2, KIF20A, or TOP2A) or encoding heat-shock proteins (HSPB1). These results provide novel insights into the biological basis of feed efficiency in dairy sheep, highlighting the informative potential of the mammary gland transcriptome as a target tissue and revealing the usefulness of combining univariate and multivariate analysis approaches to elucidate the molecular mechanisms controlling complex traits.

6.
Front Genet ; 14: 1111426, 2023.
Article in English | MEDLINE | ID: mdl-36873933

ABSTRACT

Gastrointestinal nematode (GIN) infections are considered the most important disease of grazing sheep and due to increasing anthelmintic resistance, chemical control alone is inadequate. Resistance to Gastrointestinal nematode infection is a heritable trait, and through natural selection many sheep breeds have higher resistance. Studying the transcriptome from GIN-exposed and GIN-unexposed sheep using RNA-Sequencing technology can provide measurements of transcript levels associated with the host response to Gastrointestinal nematode infection, and these transcripts may harbor genetic markers that can be used in selective breeding programs to enhance disease resistance. The objective of this study was to compare liver transcriptomes of sheep naturally exposed to Gastrointestinal nematode s, with either high or low parasite burdens, to GIN-unexposed control sheep in order to identify key regulator genes and biological processes associated with Gastrointestinal nematode infection. Differential gene expression analysis revealed no significant differentially expressed genes (DEG) between sheep with a high or low parasite burden (p-value ≤0.01; False Discovery Rate (FDR) ≤ 0.05; and Fold-Change (FC) of > ±2). However, when compared to the control group, low parasite burden sheep showed 146 differentially expressed genes (64 upregulated and 82 downregulated in the low parasite burden group relative to the control), and high parasite burden sheep showed 159 differentially expressed genes (57 upregulated and 102 downregulated in the low parasite burden group relative to the control) (p-value ≤0.01; FDR ≤0.05; and FC of > ±2). Among these two lists of significant differentially expressed genes, 86 differentially expressed genes (34 upregulated, 52 downregulated in the parasited group relative to the control) were found in common between the two parasite burden groups compared to the control (GIN-unexposed sheep). Functional analysis of these significant 86 differentially expressed genes found upregulated genes involved in immune response and downregulated genes involved in lipid metabolism. Results of this study offer insight into the liver transcriptome during natural Gastrointestinal nematode exposure that helps provide a better understanding of the key regulator genes involved in Gastrointestinal nematode infection in sheep.

7.
Sci Rep ; 13(1): 4351, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928446

ABSTRACT

In sheep, nutrition during the prepubertal stage is essential for growth performance and mammary gland development. However, the potential effects of nutrient restriction in a prepuberal stage over the progeny still need to be better understood. Here, the intergenerational effect of maternal protein restriction at prepubertal age (2 months of age) on methylation patterns was evaluated in the perirenal fat of Assaf suckling lambs. In total, 17 lambs from ewes subjected to dietary protein restriction (NPR group, 44% less protein) and 17 lambs from control ewes (C group) were analyzed. These lambs were ranked based on their carcass proportion of perirenal and cavitary fat and classified into HighPCF and LowPCF groups. The perirenal tissue from 4 NPR-LowPCF, 4 NPR-HighPCF, 4 C-LowPCF, and 4 C-HighPCF lambs was subjected to whole-genome bisulfite sequencing and differentially methylated regions (DMRs) were identified. Among other relevant processes, these DMRs were mapped in genes responsible for regulating the transition of brown to white adipose tissue and nonshivering thermoregulation, which might be associated with better adaptation/survival of lambs in the perinatal stage. The current study provides important biological insights about the intergenerational effect on the methylation pattern of an NPR in replacement ewes.


Subject(s)
Diet, Protein-Restricted , Parturition , Pregnancy , Animals , Sheep , Female , Body Temperature Regulation , Nutritional Status , Epigenesis, Genetic
8.
Animal ; 17(1): 100690, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36566708

ABSTRACT

Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from -0.04 to 0.16 in Sumava and from -0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Sheep/genetics , Animals , Inbreeding , Homozygote , Genomics , Genotype
9.
Genes (Basel) ; 13(12)2022 12 09.
Article in English | MEDLINE | ID: mdl-36553588

ABSTRACT

Transmission ratio distortion (TRD), or significant deviations from Mendelian inheritance, is a well-studied phenomenon on autosomal chromosomes, but has not yet received attention on sex chromosomes. TRD was analyzed on 3832 heterosomal single nucleotide polymorphisms (SNPs) and 400 pseudoautosomal SNPs spanning the length of the X-chromosome using 436,651 genotyped Holstein cattle. On the pseudoautosomal region, an opposite sire-TRD pattern between male and female offspring was identified for 149 SNPs. This finding revealed unique SNPs linked to a specific-sex (Y- or X-) chromosome and describes the accumulation of recombination events across the pseudoautosomal region. On the heterosomal region, 13 SNPs and 69 haplotype windows were identified with dam-TRD. Functional analyses for TRD regions highlighted relevant biological functions responsible to regulate spermatogenesis, development of Sertoli cells, homeostasis of endometrium tissue and embryonic development. This study uncovered the prevalence of different TRD patterns across both heterosomal and pseudoautosomal regions of the X-chromosome and revealed functional candidate genes for bovine reproduction.


Subject(s)
Sex Chromosomes , X Chromosome , Animals , Male , Cattle/genetics , Female , X Chromosome/genetics , Genotype , Fertility/genetics , Recombination, Genetic
10.
Front Genet ; 13: 1035063, 2022.
Article in English | MEDLINE | ID: mdl-36386829

ABSTRACT

In sheep, differences were observed regarding fat accumulation and fatty acid (FA) composition between males and females, which may impact the quality and organoleptic characteristics of the meat. The integration of different omics technologies is a relevant approach for investigating biological and genetic mechanisms associated with complex traits. Here, the perirenal tissue of six male and six female Assaf suckling lambs was evaluated using RNA sequencing and whole-genome bisulfite sequencing (WGBS). A multiomic discriminant analysis using multiblock (s)PLS-DA allowed the identification of 314 genes and 627 differentially methylated regions (within these genes), which perfectly discriminate between males and females. These candidate genes overlapped with previously reported QTLs for carcass fat volume and percentage of different FAs in milk and meat from sheep. Additionally, differentially coexpressed (DcoExp) modules of genes between males (nine) and females (three) were identified that harbour 22 of these selected genes. Interestingly, these DcoExp were significantly correlated with fat percentage in different deposits (renal, pelvic, subcutaneous and intramuscular) and were associated with relevant biological processes for adipogenesis, adipocyte differentiation, fat volume and FA composition. Consequently, these genes may potentially impact adiposity and meat quality traits in a sex-specific manner, such as juiciness, tenderness and flavour.

11.
Funct Integr Genomics ; 22(6): 1361-1376, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36001276

ABSTRACT

The high genetic heterogeneity and environmental effects of subfertility in livestock species make the elucidation of the genetic mechanisms associated with reproductive efficiency a difficult task. Network and co-expression network meta-analyses were applied alongside genetic variant calling and long non-coding RNA (lncRNA) characterization to identify functionally relevant target genes and regulatory subnetworks associated with fertility in dairy cattle. In total, 505 lncRNAs (441 previously annotated in the bovine reference genome ARS-UCD 1.2 and 64 novel lncRNAs) were identified. Seven differentially expressed genes between high-fertile (HF) and sub-fertile (SF) Holstein cows were identified in the network meta-analysis (CA5A, ENSBTAG00000051149, ENSBTAG00000003272, DEFB7, DIO2, TRPV3, and COL4A4). Additionally, seven functional candidate differentially co-expressed (DcoExp) modules with a differential regulatory pattern (|z-score|>2) were identified between HF and SF cows. The functional candidate genes and DcoExp modules identified were associated with fertility relevant processes such as the regulation of embryonic implantation and proliferation, interaction and molecule transfer between the fetus and the cow, and the immune system. These results help to better understand the genetic mechanisms associated with reproductive efficiency in dairy cattle through the identification of potential biomarkers and genetic variants associated with differentially expressed regulatory gene and lncRNAs regulatory element networks.


Subject(s)
RNA, Long Noncoding , Female , Cattle/genetics , Animals , RNA, Long Noncoding/genetics , Gene Expression Regulation , Gene Regulatory Networks , Fertility/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling
12.
BMC Genomics ; 23(1): 194, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35264109

ABSTRACT

BACKGROUND: One of the most promising strategies of Pine Pitch Canker (PPC) management is the use of reproductive plant material resistant to the disease. Understanding the complexity of plant transcriptome that underlies the defence to the causal agent Fusarium circinatum, would greatly facilitate the development of an accurate breeding program. Long non-coding RNAs (lncRNAs) are emerging as important transcriptional regulators under biotic stresses in plants. However, to date, characterization of lncRNAs in conifer trees has not been reported. In this study, transcriptomic identification of lncRNAs was carried out using strand-specific paired-end RNA sequencing, from Pinus radiata samples inoculated with F. circinatum at an early stage of infection. RESULTS: Overall, 13,312 lncRNAs were predicted through a bioinformatics approach, including long intergenic non-coding RNAs (92.3%), antisense lncRNAs (3.3%) and intronic lncRNAs (2.9%). Compared with protein-coding RNAs, pine lncRNAs are shorter, have lower expression, lower GC content and harbour fewer and shorter exons. A total of 164 differentially expressed (DE) lncRNAs were identified in response to F. circinatum infection in the inoculated versus mock-inoculated P. radiata seedlings. The predicted cis-regulated target genes of these pathogen-responsive lncRNAs were related to defence mechanisms such as kinase activity, phytohormone regulation, and cell wall reinforcement. Co-expression network analysis of DE lncRNAs, DE protein-coding RNAs and lncRNA target genes also indicated a potential network regulating pectinesterase activity and cell wall remodelling. CONCLUSIONS: This study presents the first comprehensive genome-wide analysis of P. radiata lncRNAs and provides the basis for future functional characterizations of lncRNAs in relation to pine defence responses against F. circinatum.


Subject(s)
Fusarium , Pinus , RNA, Long Noncoding , Fusarium/genetics , Pinus/genetics , Plant Breeding , Plant Diseases/genetics , RNA, Long Noncoding/genetics
13.
Front Vet Sci ; 9: 1037764, 2022.
Article in English | MEDLINE | ID: mdl-36590804

ABSTRACT

Dietary supplementation with marine lipids modulates ruminant milk composition toward a healthier fatty acid profile for consumers, but it also causes milk fat depression (MFD). Because the dairy goat industry is mainly oriented toward cheese manufacturing, MFD can elicit economic losses. There is large individual variation in animal susceptibility with goats more (RESPO+) or less (RESPO-) responsive to diet-induced MFD. Thus, we used RNA-Seq to examine gene expression profiles in mammary cells to elucidate mechanisms underlying MFD in goats and individual variation in the extent of diet-induced MFD. Differentially expression analyses (DEA) and weighted gene co-expression network analysis (WGCNA) of RNA-Seq data were used to study milk somatic cell transcriptome changes in goats consuming a diet supplemented with marine lipids. There were 45 differentially expressed genes (DEGs) between control (no-MFD, before diet-induced MFD) and MFD, and 18 between RESPO+ and RESPO-. Biological processes and pathways such as "RNA transcription" and "Chromatin modifying enzymes" were downregulated in MFD compared with controls. Regarding susceptibility to diet-induced MFD, we identified the "Triglyceride Biosynthesis" pathway upregulated in RESPO- goats. The WGCNA approach identified 9 significant functional modules related to milk fat production and one module to the fat yield decrease in diet-induced MFD. The onset of MFD in dairy goats is influenced by the downregulation of SREBF1, other transcription factors and chromatin-modifying enzymes. A list of DEGs between RESPO+ and RESPO- goats (e.g., DBI and GPD1), and a co-related gene network linked to the decrease in milk fat (ABCD3, FABP3, and PLIN2) was uncovered. Results suggest that alterations in fatty acid transport may play an important role in determining individual variation. These candidate genes should be further investigated.

14.
J Anim Sci ; 99(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34758091

ABSTRACT

Fecal egg count (FEC) is an indicative measurement for parasite infection in sheep. Different FEC methods may show inconsistent results. Not accounting for inconsistencies can be problematic when integrating measurements from different FEC methods for genetic evaluation. The objectives of this study were to evaluate the difference in means and variances between two fecal egg counting methods used in sheep-the Modified McMaster (LMMR) and the Triple Chamber McMaster (LTCM); to estimate variance components for the two FEC methods, treating them as two different traits; and to integrate FEC data from the two different methods and estimate genetic parameters for FEC and other gastrointestinal parasite resistance traits. Fecal samples were collected from a commercial Rideau-Arcott sheep farm in Ontario. Fecal egg counting was performed using both LMMR and the LTCM methods. Other parasite resistance trait records were collected from the same farm including eye score (FAMACHA), body condition score (BCS), and body weight (WT). The two FEC methods were highly genetically (0.94) and phenotypically (0.88) correlated. However, the mean and variance between the two FEC methods were significantly different (P < 0.0001). Therefore, re-scaling is required prior to integrating data from the different methods. For the multiple trait analysis, data from the two fecal egg counting methods were integrated (LFEC) by using records for the LMMR when available and replacing missing records with re-standardized LTCM records converted to the same mean and variance of LMMR. Heritability estimates were 0.12 ± 0.04, 0.07 ± 0.05, 0.17 ± 0.06, and 0.24 ± 0.07 for LFEC egg count, FAMACHA, BCS, and WT, respectively. The estimated genetic correlations between FEC and the other parasite resistance traits were low and not significant (P > 0.05) for FAMACHA (r = 0.24 ± 0.32) and WT (r = 0.22 ± 0.19), and essentially zero for BCS (r = -0.03 ± 0.25), suggesting little to no benefit of using such traits as indicators for LFEC.


Subject(s)
Intestinal Diseases, Parasitic , Parasites , Sheep Diseases , Animals , Feces , Intestinal Diseases, Parasitic/genetics , Intestinal Diseases, Parasitic/veterinary , Parasite Egg Count/veterinary , Sheep , Sheep Diseases/genetics
15.
Animals (Basel) ; 11(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466430

ABSTRACT

Transitioning from traditional to new genotyping technologies requires the development of bridging methodologies to avoid extra genotyping costs. This study aims to identify the optimum number of single nucleotide polymorphisms (SNPs) necessary to accurately impute microsatellite markers to develop a low-density SNP chip for parentage verification in the Assaf sheep breed. The accuracy of microsatellite marker imputation was assessed with three metrics: genotype concordance (C), genotype dosage (length r2), and allelic dosage (allelic r2), for all imputation scenarios tested (0.5-10 Mb microsatellite flanking SNP windows). The imputation accuracy for the three metrics analyzed for all haplotype lengths tested was higher than 0.90 (C), 0.80 (length r2), and 0.75 (allelic r2), indicating strong genotype concordance. The window with 2 Mb length provides the best accuracy for the imputation procedure and the design of an affordable low-density SNP chip for parentage testing. We additionally evaluated imputation performance under two null models, naive (imputing the most common allele) and random (imputing by randomly selecting the allele), which in comparison showed weak genotype concordances (0.41 and 0.15, respectively). Therefore, we describe a precise methodology in the present article to impute multiallelic microsatellite genotypes from a low-density SNP chip in sheep and solve the problem of parentage verification when different genotyping platforms have been used across generations.

16.
Gigascience ; 9(12)2020 12 30.
Article in English | MEDLINE | ID: mdl-33377911

ABSTRACT

BACKGROUND: The development of high-throughput sequencing and genotyping methodologies has enabled the identification of thousands of genomic regions associated with several complex traits. The integration of multiple sources of biological information is a crucial step required to better understand patterns regulating the development of these traits. FINDINGS: Genomic Annotation in Livestock for positional candidate LOci (GALLO) is an R package developed for the accurate annotation of genes and quantitative trait loci (QTLs) located in regions identified in common genomic analyses performed in livestock, such as genome-wide association studies and transcriptomics using RNA sequencing. Moreover, GALLO allows the graphical visualization of gene and QTL annotation results, data comparison among different grouping factors (e.g., methods, breeds, tissues, statistical models, studies), and QTL enrichment in different livestock species such as cattle, pigs, sheep, and chickens. CONCLUSIONS: Consequently, GALLO is a useful package for annotation, identification of hidden patterns across datasets, and data mining previously reported associations, as well as the efficient examination of the genetic architecture of complex traits in livestock.


Subject(s)
Genome-Wide Association Study , Livestock , Animals , Cattle/genetics , Chickens , Genomics , Information Storage and Retrieval , Livestock/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sheep , Swine
17.
J Anim Sci ; 98(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33205213

ABSTRACT

Sheep milk is mainly intended to manufacture a wide variety of high-quality cheeses. The ovine cheese industry would benefit from an improvement, through genetic selection, of traits related to the milk coagulation properties (MCPs) and cheese yield-related traits, broadly denoted as "cheese-making traits." Considering that routine measurements of these traits needed for genetic selection are expensive and time-consuming, this study aimed to evaluate the accuracy of a cheese-making phenotype imputation method based on the information from official milk control records combined with the pH of the milk. For this study, we analyzed records of milk production traits, milk composition traits, and measurements of cheese-making traits available from a total of 1,145 dairy ewes of the Spanish Assaf sheep breed. Cheese-making traits included five related to the MCPs and two cheese yield-related traits. The milk and cheese-making phenotypes were adjusted for significant effects based on a general linear model. The adjusted phenotypes were used to define a multiple-phenotype imputation procedure for the cheese-making traits based on multivariate normality and Markov chain Monte Carlo sampling. Five of the seven cheese-making traits considered in this study achieved a prediction accuracy of 0.60 computed as the correlation between the adjusted phenotypes and the imputed phenotypes. Particularly the logarithm of curd-firming time since rennet addition (logK20) (0.68), which has been previously suggested as a potential candidate trait to improve the cheese ability in this breed, and the logarithm of the ratio between the rennet clotting time and the curd firmness at 60 min (logRCT/A60) (0.65), which has been defined by other studies as an indicator trait of milk coagulation efficiency. This study represents a first step toward the possible use of the phenotype imputation of cheese-making traits to develop a practical methodology for the dairy sheep industry to impute cheese-making traits only based on the analysis of a milk sample without the need of pedigree information. This information could be also used in future planning of specific breeding programs considering the importance of the cheese-making efficiency in dairy sheep and highlights the potential of phenotype imputation to leverage sample size on expensive, hard-to-measure phenotypes.


Subject(s)
Cheese , Animals , Dairying , Female , Gastrointestinal Contents , Milk , Phenotype , Sheep/genetics
18.
Animals (Basel) ; 10(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882861

ABSTRACT

Different studies have shown that polymorphisms in the sequence of genes coding for the milk proteins and milk fatty acids are associated with milk composition traits as well as with cheese-making traits. However, the lack of coincident results across sheep populations has prevented the use of this information in sheep breeding programs. The main objective of this study was to exploit the information derived from a total of 175 whole genome resequencing (WGR) datasets from 43 domestic sheep breeds and three wild sheep to evaluate the genetic diversity of 24 candidate genes for milk composition and identify genetic variants with a potential phenotypic effect. The functional annotation of the identified variants highlighted five single nucleotide polymorphisms (SNPs) predicted to have a high impact on the protein function and 42 missense SNPs with a putative deleterious effect. When comparing the allelic frequencies at these 47 polymorphisms with relevant functional effects between the genomes of Assaf and Churra sheep breeds, two missense deleterious variants were identified as potential markers associated to the milk composition differences found between the Churra and Assaf: XDH:92215727C>T and LALBA:137390760T>C. Future research is required to confirm the effect of the potential functionally relevant variants identified in the present study on milk composition and cheese-making traits.

19.
Animals (Basel) ; 10(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825408

ABSTRACT

Milk from healthy animals has classically been considered a sterile fluid. With the development of massively parallel sequencing and its application to the study of the microbiome of different body fluids, milk microbiota has been documented in several animal species. In this study, the main objective of this work was to access bacterial profiles of healthy milk samples using the next-generation sequencing of amplicons from the 16S rRNA gene to characterise the milk microbiome of the Churra breed. A total of 212 samples were collected from two Churra dairy farms with a different management system. The core milk microbiota in Churra ewes includes lesser genera (only two taxa: Staphylococcus and Escherichia/Shigella) than studies reported in other dairy species or even in a previous study in Assaf sheep milk. We found that diversity values in the two flocks of Churra breed were lower than the diversity of the milk microbiota in Assaf. The non-metric multidimensional scaling (NMDS) ordination using Bray-Curtis distance separates samples based on their microbiota composition. The information reported here might be used to understand the complex issue of milk microbiota composition.

20.
Genes (Basel) ; 11(7)2020 06 27.
Article in English | MEDLINE | ID: mdl-32605032

ABSTRACT

Most of the milk produced by sheep is used for the production of high-quality cheese. Consequently, traits related to milk coagulation properties and cheese yield are economically important to the Spanish dairy industry. The present study aims to identify candidate genes and their regulators related to 14 milk and cheese-making traits and to develop a low-density panel of markers that could be used to predict an individual's genetic potential for cheese-making efficiency. In this study, we performed a combination of the classical genome-wide association study (GWAS) with a stepwise regression method and a pleiotropy analysis to determine the best combination of the variants located within the confidence intervals of the potential candidate genes that may explain the greatest genetic variance for milk and cheese-making traits. Two gene networks related to milk and cheese-making traits were created using the genomic relationship matrices built through a stepwise multiple regression approach. Several co-associated genes in these networks are involved in biological processes previously found to be associated with milk synthesis and cheese-making efficiency. The methodology applied in this study enabled the selection of a co-association network comprised of 374 variants located in the surrounding of genes showing a potential influence on milk synthesis and cheese-making efficiency.


Subject(s)
Cheese/standards , Gene Regulatory Networks , Genetic Variation , Milk/standards , Quantitative Trait, Heritable , Sheep/genetics , Animals , Female , Linkage Disequilibrium , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...