Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 697: 499-526, 2024.
Article in English | MEDLINE | ID: mdl-38816134

ABSTRACT

Enzymes play a crucial role in biochemical reactions, but their inherent structural instability limits their performance in industrial processes. In contrast, amyloid structures, known for their exceptional stability, are emerging as promising candidates for synthetic catalysis. This article explores the development of metal-decorated nanozymes formed by short peptides, inspired by prion-like domains. We detail the rational design of synthetic short Tyrosine-rich peptide sequences, focusing on their self-assembly into stable amyloid structures and their metallization with biologically relevant divalent metal cations, such as Cu2+, Ni2+, Co2+ and Zn2+. The provided experimental framework offers a step-by-step guide for researchers interested in exploring the catalytic potential of metal-decorated peptides. By bridging the gap between amyloid structures and catalytic function, these hybrid molecules open new avenues for developing novel metalloenzymes with potential applications in diverse chemical reactions.


Subject(s)
Prions , Prions/chemistry , Catalysis , Peptides/chemistry , Amyloid/chemistry , Cations, Divalent/chemistry
2.
Soft Matter ; 19(45): 8729-8743, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37929692

ABSTRACT

We examine the buckling shape and critical compression of confined inhomogeneous composite sheets lying on a liquid foundation. The buckling modes are controlled by the bending stiffness of the sheet, the density of the substrate, and the size and the spatially dependent elastic coefficients of the sheet. We solve the beam equation describing the mechanical equilibrium of a sheet when its bending stiffness varies parallel to the direction of confinement. The case of a homogeneous bending stiffness exhibits a degeneracy of wrinkled states for certain lengths of the confined sheet; we explain this degeneracy using an asymptotic analysis valid for long sheets, and show that it corresponds to the switching of the sheet between symmetric and antisymmetric buckling modes. This degeneracy disappears for spatially dependent elastic coefficients. Medium length sheets buckle similarly to their homogeneous counterparts, whereas the wrinkled states in large length sheets concentrate the bending energy towards the soft regions of the sheet.

3.
PLoS Genet ; 19(6): e1010791, 2023 06.
Article in English | MEDLINE | ID: mdl-37311005

ABSTRACT

Antibiotic combination therapies are an approach used to counter the evolution of resistance; their purported benefit is they can stop the successive emergence of independent resistance mutations in the same genome. Here, we show that bacterial populations with 'mutators', organisms with defects in DNA repair, readily evolve resistance to combination antibiotic treatment when there is a delay in reaching inhibitory concentrations of antibiotic-under conditions where purely wild-type populations cannot. In populations of Escherichia coli subjected to combination treatment, we detected a diverse array of acquired mutations, including multiple alleles in the canonical targets of resistance for the two drugs, as well as mutations in multi-drug efflux pumps and genes involved in DNA replication and repair. Unexpectedly, mutators not only allowed multi-resistance to evolve under combination treatment where it was favoured, but also under single-drug treatments. Using simulations, we show that the increase in mutation rate of the two canonical resistance targets is sufficient to permit multi-resistance evolution in both single-drug and combination treatments. Under both conditions, the mutator allele swept to fixation through hitch-hiking with single-drug resistance, enabling subsequent resistance mutations to emerge. Ultimately, our results suggest that mutators may hinder the utility of combination therapy when mutators are present. Additionally, by raising the rates of genetic mutation, selection for multi-resistance may have the unwanted side-effect of increasing the potential to evolve resistance to future antibiotic treatments.


Subject(s)
Anti-Bacterial Agents , Mutation Rate , Anti-Bacterial Agents/pharmacology , Mutation , Escherichia coli/genetics , Bacteria/genetics , Evolution, Molecular
4.
Int J Mol Sci ; 23(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499173

ABSTRACT

α-Synuclein (α-Syn) aggregates are implicated in Parkinson's disease (PD), so inhibitors of α-Syn aggregation have been intensively explored. It has been demonstrated that small molecules might be able to reduce α-Syn aggregation in fibrils, thus exerting neuroprotective effects in models of PD. To expand our knowledge about the structural requirements for blocking the recognition process into the oligomeric assembly of α-Syn aggregates, we performed a ligand-based virtual screening procedure using two well-known α-Syn aggregation inhibitors, SynuClean-D and ZPD-2, as query compounds. A collection of thirty-four compounds bearing distinct chemical functionalities and mutual chemical features were studied in a Th-T fluorescence test, thus identifying 5-(2,6-dinitro-4-(trifluoromethyl)benzyl)-1-methyl-1H-tetrazole (named MeSC-04) as a potent α-Syn amyloid formation inhibitor that demonstrated similar behavior when compared to SynuClean-D in the thioflavin-T-monitored kinetic assays, with both molecules reducing the number and size of amyloid fibrils, as evidenced by electron microscopy. Molecular modeling studies suggested the binding mode of MeSC-04 through the identification of putative druggable pockets on α-syn fibrils and a subsequent consensus docking methodology. Overall, this work could furnish new insights in the development of α-Syn amyloid inhibitors from synthetic sources.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Amyloid/metabolism , Ligands , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Amyloidogenic Proteins
5.
Phys Rev Lett ; 123(7): 070601, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31491110

ABSTRACT

We consider an out-of-equilibrium lattice model consisting of 2D discrete rotators, in contact with heat reservoirs at different temperatures. The equilibrium counterpart of such a model, the clock model, exhibits three phases: a low-temperature ordered phase, a quasiliquid phase, and a high-temperature disordered phase, with two corresponding phase transitions. In the out-of-equilibrium model the simultaneous breaking of spatial symmetry and thermal equilibrium gives rise to directed rotation of the spin variables. In this regime the system behaves as a thermal machine converting heat currents into motion. In order to quantify the susceptibility of the machine to the thermodynamic force driving it out of equilibrium, we introduce and study a dynamical response function. We show that the optimal operational regime for such a thermal machine occurs when the out-of-equilibrium disturbance is applied around the critical temperature at the boundary between the first two phases, namely, where the system is mostly susceptible to external thermodynamic forces and exhibits a sharper transition. We thus argue that critical fluctuations in a system of interacting motors can be exploited to enhance the machine overall dynamic and thermodynamic performances.

6.
Biophys J ; 116(12): 2266-2274, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31155147

ABSTRACT

The kinesin-3 motor KIF1A is involved in long-ranged axonal transport in neurons. To ensure vesicular delivery, motors need to navigate the microtubule lattice and overcome possible roadblocks along the way. The single-headed form of KIF1A is a highly diffusive motor that has been shown to be a prototype of a Brownian motor by virtue of a weakly bound diffusive state to the microtubule. Recently, groups of single-headed KIF1A motors were found to be able to sidestep along the microtubule lattice, creating left-handed helical membrane tubes when pulling on giant unilamellar vesicles in vitro. A possible hypothesis is that the diffusive state enables the motor to explore the microtubule lattice and switch protofilaments, leading to a left-handed helical motion. Here, we study the longitudinal rotation of microtubules driven by single-headed KIF1A motors using fluorescence-interference contrast microscopy. We find an average rotational pitch of ≃1.5µm, which is remarkably robust to changes in the gliding velocity, ATP concentration, microtubule length, and motor density. Our experimental results are compared to stochastic simulations of Brownian motors moving on a two-dimensional continuum ratchet potential, which quantitatively agree with the fluorescence-interference contrast experiments. We find that single-headed KIF1A sidestepping can be explained as a consequence of the intrinsic handedness and polarity of the microtubule lattice in combination with the diffusive mechanochemical cycle of the motor.


Subject(s)
Kinesins/chemistry , Kinesins/metabolism , Models, Molecular , Animals , Microtubules/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...