Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 8(65): 108534-108547, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29312549

ABSTRACT

We previously identified the transcription factor ZNF217 (human) / Zfp217 (mouse) as an oncogene and prognostic indicator of reduced survival, increased metastasis, and reduced response to therapy in breast cancer patients. Here we investigated the role of Zfp217 in chemotherapy resistance. Preclinical animal models of Zfp217 overexpression were treated with a combination therapy of the microtubule inhibitor epothilone B, doxorubicin (Adriamycin), and cyclophosphamide (EAC). Tumors overexpressing Zfp217 increased their tumor burden compared to control tumors after treatment and accumulated a mammary gland progenitor cell population (K8+K14+). To overcome this chemoresistance after ZNF217 overexpression, we treated tumors ± Zfp217 overexpression with paclitaxel and triciribine, a nucleoside analog and AKT inhibitor that kills cells that overexpress ZNF217. Treatment order critically impacted the efficacy of the therapy. Combination treatment of triciribine followed by paclitaxel (TCN→PAC) inhibited tumor burden and increased survival in tumors that overexpressed Zfp217, whereas single agent or combination treatment in the reverse order (PAC→TCN) did not improve response. Analysis of these tumors and patient-derived tumor xenograft tumors treated with the same therapies suggested that Zfp217 overexpression in tumors contributes both to decreased microvessel density and vessel maturity, while TCN→PAC tumors overexpressing Zfp217 showed improved vessel maturity.

2.
Methods Mol Biol ; 1406: 211-23, 2016.
Article in English | MEDLINE | ID: mdl-26820959

ABSTRACT

The need for model systems that more accurately predict patient outcome has led to a renewed interest and a rapid development of orthotopic transplantation models designed to grow, expand, and study patient-derived human breast tumor tissue in mice. After implanting a human breast tumor piece into a mouse mammary fat pad and allowing the tumor to grow in vivo, the tumor tissue can be either harvested and immediately implanted into mice or can be stored as tissue pieces in liquid nitrogen for surgical implantation at a later time. Here, we describe the process of surgically implanting patient-derived breast tumor tissue into the mammary gland of nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice and harvesting tumor tissue for long-term storage in liquid nitrogen.


Subject(s)
Breast Neoplasms/pathology , Cell Transformation, Neoplastic , Disease Models, Animal , Adipose Tissue/drug effects , Adipose Tissue/pathology , Animals , Cryopreservation , Epithelium/drug effects , Epithelium/pathology , Estrogens/pharmacology , Humans , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Mice , Mice, Inbred NOD , Nitrogen/chemistry
3.
Am J Cancer Res ; 4(6): 850-61, 2014.
Article in English | MEDLINE | ID: mdl-25520873

ABSTRACT

Neuroendocrine differentiation (NED) is a process by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cancer cells. Accumulated evidence suggests that NED is associated with disease progression and therapy resistance in prostate cancer patients. We previously reported that by mimicking a clinical radiotherapy protocol, fractionated ionizing radiation (FIR) induces NED in prostate cancer cells. Interestingly, FIR-induced NED constitutes two distinct phases: a radioresistance phase in which a fraction of cells selectively survive during the first two week irradiation, and a neuroendocrine differentiation phase in which surviving cells differentiate into NE-like cancer cells during the second two week irradiation. We have also observed increased activation of the transcription factor cAMP response element binding (CREB) protein during the course of FIR-induced NED. To determine whether targeting NED can be explored as a radiosensitization approach, we employed two CREB targeting strategies, CREB knockdown and overexpression of ACREB, a dominant-negative mutant of CREB, to target both phases. Our results showed that ACREB expression increased FIR-induced cell death and sensitized prostate cancer cells to radiation. Consistent with this, knockdown of CREB also inhibited FIR-induced NED and sensitized prostate cancer cells to radiation. Molecular analysis suggests that CREB targeting primarily increases radiation-induced pre-mitotic apoptosis. Taken together, our results suggest that targeting NED could be developed as a radiosensitization approach for prostate cancer radiotherapy.

4.
Nat Protoc ; 3(11): 1693-702, 2008.
Article in English | MEDLINE | ID: mdl-18846096

ABSTRACT

Studies of protein interactions have increased our understanding and knowledge of biological processes. Assays that utilize fluorescent proteins, such as fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC), have enabled direct visualization of protein interactions in living cells. However, these assays are primarily suitable for a pair of interacting proteins, and methods to visualize and identify multiple protein complexes in vivo are very limited. This protocol describes the recently developed BiFC-FRET assay, which allows visualization of ternary complexes in living cells. We discuss how to design the BiFC-FRET assay on the basis of the validation of BiFC and FRET assays and how to perform transfection experiments for acquisition of fluorescent images for net FRET calculation. We also provide three methods for normalization of the FRET efficiency. The assay employs a two-chromophore and three-filter FRET setup and is applicable to epifluorescence microscopes. The entire protocol takes about 2-3 weeks to complete.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Ternary Complex Factors/chemistry , Ternary Complex Factors/metabolism , Animals , COS Cells , Chlorocebus aethiops
5.
Proc Natl Acad Sci U S A ; 105(1): 151-6, 2008 Jan 08.
Article in English | MEDLINE | ID: mdl-18172215

ABSTRACT

Protein-protein interactions are essential for maintaining cell structure and for executing almost all cellular processes. Determination of where and how each protein interacts with its partners provides significant insight into proteins' cellular roles. Although several assays, such as FRET and bimolecular fluorescence complementation (BiFC), have been developed and widely used for visualization and identification of protein interactions in living cells, there is no simple and convenient assay to visualize and identify multiple protein complexes in living cells. Because many signaling molecules often function as ternary complexes, availability of an assay for visualization and identification of ternary complexes will significantly expand the repertoire of protein interaction studies in living cells. By using the Fos-Jun-nuclear factor of activated T cells (NFAT) ternary complex as a model and the fluorescent proteins Cerulean and Venus, two mutant proteins of CFP and YFP with better folding and less environment sensitivity, as a donor and acceptor, respectively, we have combined a Venus-based BiFC system with Cerulean to develop a BiFC-based FRET (BiFC-FRET) assay for visualization of ternary complexes in living cells with a conventional three-filter FRET setup. We also have applied the BiFC-FRET to identify a ternary complex formed between Fos-Jun heterodimers and the NF-kappaB subunit, p65. This finding reveals a cross-talk between AP-1 and NF-kappaB. Thus, the BiFC-FRET represents a convenient assay for identification and visualization of ternary complexes in living cells.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , NF-kappa B/metabolism , Transcription Factor AP-1/physiology , DNA, Complementary/metabolism , Dimerization , Fluorescence Resonance Energy Transfer/instrumentation , Fluorescent Dyes/pharmacology , Gene Library , Glutathione Transferase/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Fluorescence , NFATC Transcription Factors/metabolism , Plasmids/metabolism , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...