Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(14): 7694-7706, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530768

ABSTRACT

In this study, we evaluated the effect of increasing the salinity of irrigation water on the metabolic content and profiles of two tomato cultivars ('Jaune Flamme' (JF) and 'Red Pear' (RP)) using targeted and untargeted metabolomics approaches. Irrigation of tomato plants was performed with four different salt concentrations provided by chloride (treatment 1) and sulfate (treatment 2) salts. Targeted analysis of the methanolic extract resulted in the identification of nine major polyphenols. Among them, chlorogenic acid, rutin, and naringenin were the prominent compounds in both cultivars. In addition, the quantification of 18 free amino acids from both tomato cultivars showed that different salinity treatments significantly enhanced the levels of glutamine, glutamic acid, and γ-aminobutyric acid (GABA). Using the untargeted metabolomic approach, we identified 129 putative metabolites encompassing a diverse array of phytochemicals including polyphenols, organic acids, lipids, sugars, and amino acids. Principal component analysis (PCA) of mass spectral data acquired under positive and negative ionization modes showed a clear separation between the two cultivars. However, only positive ionization showed separation among different salinity treatments. Unsupervised and supervised learning algorithms were applied to mine the generated data and to pinpoint metabolites different from the two cultivars. These findings suggest that different salinity conditions significantly influenced the accumulation of phytochemicals in tomato cultivars. This study will help tomato breeding programs to develop value-added tomato cultivars under varying environmental conditions.


Subject(s)
Solanum lycopersicum , Salinity , Plant Breeding , Metabolomics/methods , Phytochemicals/chemistry , Amino Acids
2.
Sci Rep ; 12(1): 5115, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332240

ABSTRACT

Scarce freshwater resources in arid and semiarid regions means that recreational landscapes should use recycled or low-quality waters for irrigation, increasing the risk of salinity and infiltration problems. We map salinity distribution within turf fields using electromagnetic sensing, evaluate need for leaching and evaluate post leaching results for subsequent management decisions. Electromagnetic measurements were made with two EM38 instruments positioned vertically and horizontally in order to determine salinity distribution. Sensor readings were coupled to GPS data to create spatial salinity maps. Next, optimal calibration point coordinates were determined via Electrical Conductivity Sampling Assessment and Prediction (ESAP) software. Soil samples from 0-15 and 15-30 cm depths were used for each calibration point. Laboratory soil saturation percentage, moisture content, electrical conductivity (ECe) and pHe of saturation extracts were determined for calibration to convert resistivity measurements to ECe. Next, ECe maps were created using ESAP software. Leaching for reclamation was performed by means of sprinkling. Treated municipal wastewater was utilized both for irrigation and for reclamation leaching. Low water content and high spatial variability of soil texture adversely affected the accuracy of the readings. Pre and post leaching surveys indicate that in one fairway there was only a 43% and 58% decrease in soil salinity at 0-15 and 15-30 cm depths, respectively which is very low relative to expected results considering the amount of water applied. This relatively low reduction in salinity and the lack of runoff during irrigation combined with infiltration measurements suggests that aeration techniques for healthier grasses led to water bypassing small pores thus limiting leaching efficiency. In this instance practices to improve infiltration lead paradoxically to less salinity reclamation than expected.


Subject(s)
Salinity , Soil , Electromagnetic Phenomena , Wastewater , Water
3.
Sci Rep ; 12(1): 1274, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075204

ABSTRACT

The almond crop has high economic importance on a global scale, but its sensitivity to salinity stress can cause severe yield losses. Salt-tolerant rootstocks are vital for crop economic feasibility under saline conditions. Two commercial rootstocks submitted to salinity, and evaluated through different parameters, had contrasting results with the survival rates of 90.6% for 'Rootpac 40' (tolerant) and 38.9% for 'Nemaguard' (sensitive) under salinity (Electrical conductivity of water = 3 dS m-1). Under salinity, 'Rootpac 40' accumulated less Na and Cl and more K in leaves than 'Nemaguard'. Increased proline accumulation in 'Nemaguard' indicated that it was highly stressed by salinity compared to 'Rootpac 40'. RNA-Seq analysis revealed that a higher degree of differential gene expression was controlled by genotype rather than by treatment. Differentially expressed genes (DEGs) provided insight into the regulation of salinity tolerance in Prunus. DEGs associated with stress signaling pathways and transporters may play essential roles in the salinity tolerance of Prunus. Some additional vital players involved in salinity stress in Prunus include CBL10, AKT1, KUP8, Prupe.3G053200 (chloride channel), and Prupe.7G202700 (mechanosensitive ion channel). Genetic components of salinity stress identified in this study may be explored to develop new rootstocks suitable for salinity-affected regions.


Subject(s)
Prunus/metabolism , Salt Tolerance , Calcium Signaling , Photosynthesis , Plant Stomata/physiology , Prunus/growth & development , Species Specificity , Trace Elements/metabolism , Transcriptome
4.
Sci Rep ; 11(1): 16298, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381090

ABSTRACT

The Solanaceae family includes commercially important vegetable crops characterized by their relative sensitivity to salinity. Evaluation of 8 eggplant (Solanum melongena), 7 tomato (Solanum lycopersicum), and 8 pepper (Capsicum spp.) heirloom cultivars from different geographic regions revealed significant variation in salt tolerance. Relative fruit yield under salt treatment varied from 52 to 114% for eggplant, 56 to 84% for tomato, and 52 to 99% for pepper. Cultivars from all three crops, except Habanero peppers, restricted Na transport from roots to shoots under salinity. The high salt tolerance level showed a strong association with low leaf Na concentration. Additionally, the leaf K-salinity/K-control ratio was critical in determining the salinity tolerance of a genotype. Differences in relative yield under salinity were regulated by several component traits, which was consistent with the gene expression of relevant genes. Gene expression analyses using 12 genes associated with salt tolerance showed that, for eggplant and pepper, Na+ exclusion was a vital component trait, while sequestration of Na+ into vacuoles was critical for tomato plants. The high variability for salt tolerance found in heirloom cultivars helped characterize genotypes based on component traits of salt tolerance and will enable breeders to increase the salt tolerance of Solanaceae cultivars.


Subject(s)
Capsicum/genetics , Genetic Linkage/genetics , Ions/metabolism , Salt Tolerance/genetics , Solanum lycopersicum/genetics , Solanum melongena/genetics , Capsicum/metabolism , Fruit/genetics , Fruit/metabolism , Solanum lycopersicum/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Potassium/metabolism , Salinity , Sodium/metabolism , Solanum melongena/metabolism
5.
PLoS One ; 16(6): e0252242, 2021.
Article in English | MEDLINE | ID: mdl-34061881

ABSTRACT

The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.


Subject(s)
Salinity , Seasons , Spinacia oleracea/metabolism , Spinacia oleracea/microbiology
6.
Sci Rep ; 11(1): 5210, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664362

ABSTRACT

Alfalfa is an important forage crop that is moderately tolerant to salinity; however, little is known about its salt-tolerance mechanisms. We studied root and leaf transcriptomes of a salt-tolerant (G03) and a salt-sensitive (G09) genotype, irrigated with waters of low and high salinities. RNA sequencing led to 1.73 billion high-quality reads that were assembled into 418,480 unigenes; 35% of which were assigned to 57 Gene Ontology annotations. The unigenes were assigned to pathway databases for understanding high-level functions. The comparison of two genotypes suggested that the low salt tolerance index for transpiration rate and stomatal conductance of G03 compared to G09 may be due to its reduced salt uptake under salinity. The differences in shoot biomass between the salt-tolerant and salt-sensitive lines were explained by their differential expressions of genes regulating shoot number. Differentially expressed genes involved in hormone-, calcium-, and redox-signaling, showed treatment- and genotype-specific differences and led to the identification of various candidate genes involved in salinity stress, which can be investigated further to improve salinity tolerance in alfalfa. Validation of RNA-seq results using qRT-PCR displayed a high level of consistency between the two experiments. This study provides valuable insight into the molecular mechanisms regulating salt tolerance in alfalfa.


Subject(s)
Medicago sativa/genetics , Salt Stress/genetics , Salt Tolerance/genetics , Transcriptome/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Genotype , Medicago sativa/growth & development , Plant Leaves/genetics , Plant Leaves/growth & development , Salinity , Sequence Analysis, RNA
7.
Sci Rep ; 10(1): 21087, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273661

ABSTRACT

Fourteen commercial almond rootstocks were tested under five types of irrigation waters to understand the genetic, physiological, and biochemical bases of salt-tolerance mechanisms. Treatments included control (T1) and four saline water treatments dominant in sodium-sulfate (T2), sodium-chloride (T3), sodium-chloride/sulfate (T4), and calcium/magnesium-chloride/sulfate (T5). T3 caused the highest reduction in survival rate and trunk diameter, followed by T4 and T2, indicating that Na and, to a lesser extent, Cl were the most toxic ions to almond rootstocks. Peach hybrid (Empyrean 1) and peach-almond hybrids (Cornerstone, Bright's Hybrid 5, and BB 106) were the most tolerant to salinity. Rootstock's performance under salinity correlated highly with its leaf Na and Cl concentrations, indicating that Na+ and Cl- exclusion is crucial for salinity tolerance in Prunus. Photosynthetic rate correlated with trunk diameter and proline leaf ratio (T3/T1) significantly correlated with the exclusion of Na+ and Cl-, which directly affected the survival rate. Expression analyses of 23 genes involved in salinity stress revealed that the expression differences among genotypes were closely associated with their performance under salinity. Our genetic, molecular, and biochemical analyses allowed us to characterize rootstocks based on component traits of the salt-tolerance mechanisms, which may facilitate the development of highly salt-tolerant rootstocks.


Subject(s)
Genotype , Prunus dulcis/growth & development , Salt Stress , Agricultural Irrigation , Chlorides/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Prunus dulcis/genetics , Prunus dulcis/metabolism , Sodium/metabolism
8.
Plants (Basel) ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317110

ABSTRACT

Information is scarce on the interaction of mineral deficiency and salinity. We evaluated two salt-tolerant spinach cultivars under potassium (K) doses (0.07, 0.15, 0.3, and 3.0 mmolc L-1) and saline irrigation (5, 30, 60, 120, and 160 mmolc L-1 NaCl) during germination and growth. There was no interaction between salinity and K. Salinity decreased germination percent (GP), not always significantly, and drastically reduced seedling biomass. 'Raccoon' significantly increased GP at 60 mmolc L-1 while 'Gazelle' maintained GP up to 60 or 120 mmolc L-1. After 50 days under saline irrigation, shoot biomass increased significantly at 30 and 60 mmolc L-1 at the lowest K dose but, in general, neither salinity nor K dose affected shoot biomass, suggesting that salinity supported plant growth at the most K-deficient dose. Salinity did not affect shoot N, P, or K but significantly reduced Ca, Mg, and S, although plants had no symptoms of salt toxicity or mineral deficiency. Although spinach seedlings are more sensitive to salt stress, plants adjusted to salinity with time. Potassium requirement for spinach growth was less than the current crop recommendation, allowing its cultivation with waters of moderate to high salinity without considerable reduction in yield, appearance, or mineral composition.

9.
Sci Total Environ ; 717: 137207, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32070896

ABSTRACT

Salinity is a major problem facing agriculture in arid and semiarid regions of the world. This problem may vary among seasons affecting both above- and belowground plant microbiomes. However, very few studies have been conducted to examine the influence of salinity and drought on microbiomes and on their functional relationships. The objective for the study was to examine the effects of salinity and drought on above- and belowground spinach microbiomes and evaluate seasonal changes in their bacterial community composition and diversity. Furthermore, potential consequences for community functioning were assessed based on 16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on results obtained with Piphillin. The experiment was repeated three times from early fall to late spring in sand tanks planted with spinach (Spinacia oleracea L., cv. Racoon) grown with saline water of different concentrations and provided at different amounts. Proteobacteria, Cyanobacteria, and Bacteroidetes accounted for 77.1% of taxa detected in the rhizosphere; Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil, while Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria accounted for 55.35% of taxa detected in the phyllosphere. Salinity significantly affected root microbiome beta-diversity according to weighted abundances (p = 0.032) but had no significant effect on the relative abundances of microbial taxa (p = 0.568). Pathways and functional genes analysis of soil, rhizosphere, and phyllosphere showed that the most abundant functional genes were mapped to membrane transport, DNA repair and recombination, signal transduction, purine metabolism, translation-related protein processing, oxidative phosphorylation, bacterial motility protein secretion, and membrane receptor proteins. Monoterpenoid biosynthesis was the most significantly enriched pathway in rhizosphere samples when compared to the soil samples. Overall, the predictive abundances indicate that, functionally, the rhizosphere bacteria had the highest gene abundances and that salinity and drought affected the above- and belowground microbiomes differently.


Subject(s)
Microbiota , Spinacia oleracea , Droughts , RNA, Ribosomal, 16S , Rhizosphere , Salinity , Soil Microbiology
10.
Sci Rep ; 9(1): 19373, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31853094

ABSTRACT

Scarcity of fresh water in arid and semi-arid regions means that we must use more saline waters for irrigation and develop tools to improve crop salt tolerance. The objectives of our study were to (1) Evaluate fruit production, salt tolerance and ion composition of eggplant cv Angela, both nongrafted and when grafted on tomato cv Maxifort rootstock and (2) Evaluate eggplant specific toxicity effect of Cl- and Na+ ions under saline conditions. We salinized the irrigation water with either a Na+-Ca2+- Cl- composition typical of coastal Mediterranean ground waters as well as a mixed Na+-Ca2+-SO42- Cl- type water, a composition more typical of interior continental basin ground. For each water type we evaluated 5 different salinity (osmotic) levels of -0.003 (control), -0.15, -0.30, -0.45 and -0.60 MPa. There were no statistically significant differences in the fruit yield relative to the water type, indicating that Cl- ion toxicity is not a major factor in eggplant yield associated with salinity. This conclusion was confirmed by the determination that leaf Cl content was not correlated with relative yield. The electrical conductivity of the saturation extract (ECe) at which yield is predicted to be reduced by 50% was 4.6 dS m-1 for the grafted plants vs. 1.33 dS m-1 for the nongrafted plants. The relative yield was very well correlated to leaf Na concentrations regardless of grafting status, indicating that Na is the toxic ion responsible for eggplant yield loss under saline conditions. The increased salt tolerance of cv Angela eggplant when grafted onto tomato Maxifort rootstock is attributed to a reduced Na uptake and increased Ca and K uptake with Maxifort rootstock.


Subject(s)
Fruit/growth & development , Saline Waters/pharmacology , Solanum melongena/growth & development , Water/chemistry , Agricultural Irrigation/methods , Crop Production/methods , Fruit/metabolism , Humans , Osmosis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Saline Waters/chemistry , Salinity , Salt Tolerance/drug effects , Sodium/chemistry , Soil/chemistry , Solanum melongena/metabolism
11.
Biotechnol Bioeng ; 115(6): 1475-1484, 2018 06.
Article in English | MEDLINE | ID: mdl-29476634

ABSTRACT

Currently, major biofuel crops are also food crops that demand fertile soils and good-quality water. Jerusalem artichoke (Helianthus tuberosus, Asteraceae) produces high tonnage of tubers that are rich in sugars, mainly in the form of inulin. In this study, plants of the cultivar "White Fuseau" grown under five salinity levels were evaluated for tuber yield. Results indicated that this cultivar is moderately salt-tolerant if the goal is tuber production. Hydraulic pressings of the tubers produced juice that contained 15% (wet weight) or 55% (dry weight) free sugars, with 70% of these in the form of inulin and the rest as fructose, sucrose, and glucose. Importantly, salinity did not affect the total free sugar or inulin content of the tubers. Tubers were composed of about 12% dry washed bagasse (wet weight) or 44% (dry matter basis) and bagasse retained such high quantities of free sugars after pressing that washing was required for complete sugar recovery. Chemical composition analysis of tuber bagasse suggested that it had low lignin content (11-13 wt%), and its structural sugar composition was similar to chicory root bagasse. Because of the high hemicellulose and pectin content of the bagasse, adding xylanase and pectinase to cellulase substantially improved sugar yields from enzymatic hydrolysis compared to at the same protein loading as cellulase alone. In addition to the high total sugar yield of tuber, these first findings on the sugar and lignin content and enzymatic hydrolysis of tuber bagasse can lead to low-cost production of ethanol for transportation fuels.


Subject(s)
Agricultural Irrigation/methods , Helianthus/chemistry , Helianthus/growth & development , Plant Tubers/chemistry , Plant Tubers/growth & development , Saline Waters , Sugars/analysis
12.
Funct Integr Genomics ; 18(2): 141-153, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29280022

ABSTRACT

One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~ 20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl- contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl-. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.


Subject(s)
Medicago truncatula/genetics , Plant Proteins/genetics , Sodium-Hydrogen Exchangers/genetics , Amiloride/pharmacology , Binding Sites , Plant Leaves/metabolism , Plant Proteins/antagonists & inhibitors , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/metabolism , Protein Binding , Salinity , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Stress, Physiological
13.
Sci Rep ; 7: 42958, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225027

ABSTRACT

Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index of the genotypes ranged from 0.39 to 1. The most salt-tolerant genotypes SISA14-1 (G03) and AZ-90ST (G10), the top performers for biomass, exhibited the least effect on shoot number and height. SISA14-1 (G03) accumulated low Na and Cl under salinity. Most genotypes exhibited a net reduction in shoot Ca, Mg, P, Fe, and Cu, while Mn and Zn increased under salinity. Salinity reduced foliar area and stomatal conductance; while net photosynthetic rate and transpiration were not affected. Interestingly, salinity increased chlorophyll and antioxidant capacity in most genotypes; however neither parameter correlated well to ST index. Salt-tolerant genotypes showed upregulation of the SOS1, SOS2, SOS3, HKT1, AKT1, NHX1, P5CS1, HSP90.7, HSP81.2, HSP71.1, HSPC025, OTS1, SGF29 and SAL1 genes. Gene expression analyses allowed us to classify genotypes based on their ability to regulate different components of the salt tolerance mechanism. Pyramiding different components of the salt tolerance mechanism may lead to superior salt-tolerant alfalfa genotypes.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Medicago sativa/metabolism , Plant Proteins/genetics , Salinity , Sodium Chloride/pharmacology , Antioxidants/metabolism , Biomass , Chlorides/metabolism , Chlorophyll/metabolism , Genotype , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Medicago sativa/drug effects , Medicago sativa/genetics , Plant Proteins/metabolism , Plant Shoots/chemistry , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Signal Transduction/genetics , Sodium/metabolism , Soil/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
14.
Sci Total Environ ; 579: 1485-1495, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27916300

ABSTRACT

Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in soils impacted by saline irrigation water respond differently to irrigation water quality and season of application due to temporal effects associated with temperature.


Subject(s)
Droughts , Environmental Monitoring , Rhizosphere , Seasons , Spinacia oleracea/physiology , Agricultural Irrigation , Desert Climate , Salinity , Soil Microbiology
15.
J Environ Qual ; 42(1): 208-18, 2013.
Article in English | MEDLINE | ID: mdl-23673756

ABSTRACT

Perchlorate (ClO) has been detected in edible leafy vegetables irrigated with Colorado River water. The primary concern has been the ClO concentration in lettuce ( L. var. L.). There has been a limited number of studies on ClO uptake, but the interactive effect of other anions on ClO uptake is not known in detail. We conducted a greenhouse ClO uptake experiment using two types of lettuce (iceberg and butterhead) to investigate the interaction of uptake of ClO, Cl, and NO on ClO uptake under controlled conditions. We examined three concentrations of ClO, 40, 220, and 400 nmol/L; Cl at 2.5, 13.75, and 25 mmol/L; and NO at 2, 11, and 20 mmol/L. Perchlorate was taken up the most in lettuce when ClO was the greatest and NO and Cl were lowest in concentration in the irrigation water. More ClO was detected in leafy material than in root tissue. In general, the outer leaves of iceberg and butterhead lettuce contained more ClO than did the inner leaves. The results indicate that selective ClO uptake occurs for green leaf lettuce. A predictive model was developed to describe the ClO concentration in lettuce as related to the Cl, NO, and ClO concentration in the irrigation water. Research results can be utilized to elucidate the effect of salts on the accumulation and uptake of ClO by edible leafy vegetables.


Subject(s)
Lactuca , Perchlorates , Agricultural Irrigation , Chlorides , Nitrates , Plant Leaves
16.
Environ Sci Technol ; 45(21): 9363-71, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21939238

ABSTRACT

Several studies have reported on the detection of perchlorate (ClO(4)(-)) in edible leafy vegetables irrigated with Colorado River water. However, there is no information on spinach as related to ClO(4)(-) in irrigation water nor on the effect of other anions on ClO(4)(-) uptake. A greenhouse ClO(4)(-) uptake experiment using spinach was conducted to investigate the impact of presence of chloride (Cl(-)) and nitrate (NO(3)(-)) on ClO(4)(-) uptake under controlled conditions. We examined three concentrations of ClO(4)(-), 40, 220, and 400 nmol(c)/L (nanomoles of charge per liter of solution), three concentrations of Cl(-), 2.5, 13.75, and 25 mmol(c)/L, and NO(3)(-) at 2, 11, and 20 mmol(c)/L. The results revealed that ClO(4)(-) was taken up the most when NO(3)(-) and Cl(-) were lowest in concentration in irrigation water. More ClO(4)(-) was detected in spinach leaves than that in the root tissue. Relative to lettuces, spinach accumulated more ClO(4)(-) in the plant tissue. Perchlorate was accumulated in spinach leaves more than reported for outer leaves of lettuce at 40 nmol(c)/L of ClO(4)(-) in irrigation water. The results also provided evidence that spinach selectively took up ClO(4)(-) relative to Cl(-). We developed a predictive model to describe the ClO(4)(-) concentration in spinach as related to the Cl(-), NO(3)(-), and ClO(4)(-) concentration in irrigation water.


Subject(s)
Agricultural Irrigation , Perchlorates/metabolism , Spinacia oleracea/metabolism , Chlorides/metabolism , Nitrates/metabolism , Water Pollutants, Chemical/metabolism
17.
J Environ Qual ; 37(5 Suppl): S169-79, 2008.
Article in English | MEDLINE | ID: mdl-18765763

ABSTRACT

The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.


Subject(s)
Agriculture , Rain/chemistry , Sodium/chemistry , Soil/analysis , Water/chemistry , Electric Conductivity
18.
Environ Sci Technol ; 36(5): 976-81, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11918029

ABSTRACT

The oxidation of arsenite (As(III)) by manganese oxide is an important reaction in both the natural cycling of As and the development of remediation technology for lowering the concentration of dissolved As(III) in drinking water. This study used both a conventional stirred reaction apparatus and extended X-ray absorption fine structure (EXAFS) spectroscopy to investigate the reactions of As(III) and As(V) with synthetic birnessite (MnO2). Stirred reactor experiments indicate that As(III) is oxidized by MnO2 followed by the adsorption of the As(V) reaction product on the MnO2 solid phase. The As(V)-Mn interatomic distance determined by EXAFS analysis for both As(III)- and As(V)-treated MnO2 was 3.22 A, giving evidence for the formation of As(V) adsorption complexes on MnO2 crystallite surfaces. The most likely As(V)-MnO2 complex is a bidentate binuclear corner sharing (bridged) complex occurring at MnO2 crystallite edges and interlayer domains. In the As(III)-treated MnO2 systems, reductive dissolution of the MnO2 solid during the oxidation of As(III) caused an increase in the adsorption of As(V) when compared with As(V)-treated MnO2. This suggested that As(III) oxidation caused a surface alteration, creating fresh reaction sites for As(V) on MnO2 surfaces.


Subject(s)
Antacids/chemistry , Arsenic/chemistry , Magnesium Oxide/chemistry , Water Pollutants/analysis , Water Supply , Absorptiometry, Photon , Adsorption , Oxidation-Reduction
19.
Environ Pollut ; 116 Suppl 1: S37-44, 2002.
Article in English | MEDLINE | ID: mdl-11833916

ABSTRACT

Simulations of above-canopy water vapor and CO2 fluxes were calculated by the USGF linked model of canopy gas exchange and subsurface processes for the 1996-1997 winter wheat season at the AmeriFlux Wheat Site, Oklahoma. Soil surface CO2 flux plus canopy gas exchange and transpiration plus soil evaporation modeled the CO2 and water vapor fluxes, respectively. Parameter values for net photosynthesis, respiration and transpiration were obtained from published sources, generated from Wheat Site data, or estimated by minimizing standard deviation between model and data. The mean measured downward flux of CO2 during rapid growth and maturity of the crop was -0.45 mg m(-2) s(-1) compared to simulated flux of -0.47. Simulated downward CO2 flux exceeded measured values during rapid growth of the crop but underestimated the flux during maturity. For the entire 285-day period, the mean measured upward CO2 flux at night was 0.06 and simulated flux was 0.05.


Subject(s)
Carbon Dioxide/analysis , Models, Theoretical , Triticum/physiology , Carbon Dioxide/chemistry , Environmental Monitoring , Plant Leaves , Seasons , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...