Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet World ; 16(12): 2446-2450, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38328353

ABSTRACT

Background and Aim: Rabies has been endemic in Bali since 2009, and cases has recently increased. Unfortunately, there is a lack of available vaccines, which hinders the eradication program. This study aimed to investigate the epidemiological and virological aspects of rabies infection in Bali. Materials and Methods: A total of 24 brain samples were collected from rabid dogs in all districts of Bali. The samples were tested using the direct fluorescent antibody (DFA) test and polymerase chain reaction (PCR) to confirm the presence of rabies virus in the samples. Samples with the highest virus content were propagated in vivo and then inoculated into BALB/c mice. The brains of dead mice were used to prepare an inoculate cultured in murine neuroblastoma cells. Supernatant-positive viruses representing each district were then reinoculated into eight groups of five BALB/c mice. A brain sample from each dead mouse was tested using DFA and PCR and detected under a fluorescence microscope. Results: All rabies virus-positive samples collected from rabid dogs in all districts of Bali were positive. Rabies virus was detected by DFA test and PCR and was consistently confirmed in the in vivo and in vitro studies. BALB/c mice inoculated with the highest viral dilution (105 cells/mL) of culture supernatant showed typical signs of rabies, indicating that the virus could be properly investigated. Conclusion: This study demonstrated a wide epidemiological distribution of rabies in Bali. The obtained virus can be adapted for in vitro and in vivo studies and can be used to develop a homologous vaccine.

2.
Vet World ; 12(9): 1434-1440, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31749578

ABSTRACT

AIMS: The purposes of this study were to determine the anticancer activity of Xestospongia testudinaria sponge isolate and identify the responsible compounds. MATERIALS AND METHODS: The metabolites were extracted using methanol maceration at room temperature. The separation and purification of metabolites were performed using fractionation and column chromatography. The toxicity was examined using the brine shrimp lethality assay, and the toxic isolates were tested for anticancer activity against HeLa cells. Gas chromatography-mass spectrometry analysis was used to identify the compounds in the isolate. RESULTS: When the methanol extract was partitioned with n-hexane, chloroform, and n-butanol, the chloroform fraction was the most toxic, with a concentration that results in 50% lethality (LC50) value of 39.81 ppm. After separation of the chloroform extract, fraction B (FB) was the most toxic, with an LC50 value of 44.67 ppm. The isolate from FB showed anticancer activity with a concentration at which 50% of growth was inhibited (IC50) of 2.273 ppm. In total, 21 compounds were identified in anticancer isolates: Nonanedioic acid; tetradecanoic acid; trans-phytol; 2-pentadecanone-6,10,14-trimethyl; pentadecanoic acid; 2-hexadecen-1-ol, 3,7,11,15-tetramethyl-; pentadecanoic acid; 2-hexadecen-1-ol, 3,7,11,15-tetramethyl-; 2,3,7-trimethyloctanal; palmitic acid; docosanoic acid, ethyl ester; 1,E-11,Z-13-octadecatriene; chloromethyl 4-chlorododecanoate; 1-tricosene; 9,12-octadecadienoic acid; 4,8,12,16-tetramethylheptadecan-4-olide; 1-docosene; heneicosane; phosphonic acid, dioctadecyl ester; dodecane,4,6-dimethyl-; n-tetratriacontane; 1-iodohexadecane; and n-heneicosane. CONCLUSION: These findings indicate that the isolate of X. testudinaria can be used as a natural anticancer toward HeLa cell.

3.
Acta Biochim Pol ; 66(3): 329-336, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31531422

ABSTRACT

The potential emergence of deadly pandemic influenza viruses is unpredictable and most have emerged with no forewarning. The distinct epidemiological and pathological patterns of the Spanish (H1N1), pandemic-2009 (H1N1), and avian influenza (H5N1), known as bird flu, viruses may allow us to develop a 'template' for possible emergence of devastating pandemic strains. Here, we provide a detailed molecular dissection of the structural and nonstructural proteins of this triad of viruses. GenBank data for three representative strains were analyzed to determine the polymorphic amino acids, genetic distances, and isoelectric points, hydrophobicity plot, and protein modeling of various proteins. We propose that the most devastating pandemic strains may have full-length PB1-F2 protein with unique residues, highly cleavable HA, and a basic NS1. Any newly emerging strain should be compared with these three strains, so that resources can be directed appropriately.


Subject(s)
Computer Simulation , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/virology , Influenza, Human/virology , Viral Proteins/chemistry , Animals , Birds , Disease Transmission, Infectious , Genome, Viral , Humans , Influenza Pandemic, 1918-1919 , Influenza Vaccines , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Protein Conformation, alpha-Helical , Viral Proteins/genetics
4.
Vet World ; 11(11): 1637-1640, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30587901

ABSTRACT

AIM: The study was aimed to prepare and examine the potential and safety concerns of egg drop syndrome (EDS) vaccine candidate seed. The potential and safety trials of EDS Medan isolate vaccine need to be done before commercial scale of EDS vaccines are made. MATERIALS AND METHODS: The safety test of EDS candidate vaccine was tested on 4-week-old specified pathogen-free chickens in an experimentally isolated enclosure. RESULTS: The result of the safety test obtained 27.3 hemagglutination inhibition (HI) unit of geometric mean titer antibody post-vaccination. However, the potency test of the EDS candidate vaccine was conducted on 17-week-old laying hens. Test results of the EDS potency vaccine in layer obtained antibody titer increased in every week of blood taking with average titer of antibody: Before vaccinated was 22.9 HI unit, 1 week after vaccination was 23.7 HI unit, 2 weeks post-vaccination was 25 HI unit, and 3 weeks after vaccination was 27.3 HI units. In contrast, decreasing trend was observed in control group (unvaccinated chicken). CONCLUSION: Serologically, the seed vaccine of EDS virus isolates from Medan was able to produce protective antibody titers starting in the 2nd and 3rd weeks post-vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL
...