Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38838263

ABSTRACT

Extracellular vesicles, particularly exosomes, have emerged as promising drug delivery systems owing to their unique advantages, such as biocompatibility, immune tolerability, and target specificity. Various engineering strategies have been implemented to harness these innate qualities, with a focus on enhancing the pharmacokinetic and pharmacodynamic properties of exosomes via payload loading and surface engineering for active targeting. This concise review outlines the challenges in the development of exosomes as drug carriers and offers insights into strategies for their effective clinical translation. We also highlight preclinical studies that have successfully employed anti-inflammatory exosomes and suggest future directions for exosome therapeutics. These advancements underscore the potential for integrating exosome-based therapies into clinical practice, heralding promise for future medical interventions.

3.
Gastroenterology ; 165(1): 133-148.e17, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36907523

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA), with its highly metastatic propensity, is one of the most lethal subtypes of pancreatic cancer. Although recent large-scale transcriptomic studies have demonstrated that heterogeneous gene expressions play an essential role in determining molecular phenotypes of PDA, biological cues for and consequences of distinct transcriptional programs remain unclear. METHODS: We developed an experimental model that enforces the transition of PDA cells toward a basal-like subtype. We combined epigenome and transcriptome analyses with extensive in vitro and in vivo evaluations of tumorigenicity to demonstrate the validity of basal-like subtype differentiation in association with endothelial-like enhancer landscapes via TEA domain transcription factor 2 (TEAD2). Finally, we used loss-of-function experiments to investigate the importance of TEAD2 in regulating reprogrammed enhancer landscape and metastasis in basal-like PDA cells. RESULTS: Aggressive characteristics of the basal-like subtype are faithfully recapitulated in vitro and in vivo, demonstrating the physiological relevance of our model. Further, we showed that basal-like subtype PDA cells acquire a TEAD2-dependent proangiogenic enhancer landscape. Genetic and pharmacologic inhibitions of TEAD2 in basal-like subtype PDA cells impair their proangiogenic phenotypes in vitro and cancer progression in vivo. Last, we identify CD109 as a critical TEAD2 downstream mediator that maintains constitutively activated JAK-STAT signaling in basal-like PDA cells and tumors. CONCLUSIONS: Our findings implicate a TEAD2-CD109-JAK/STAT axis in the basal-like differentiated pancreatic cancer cells and as a potential therapeutic vulnerability.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Pancreas/pathology , Cell Differentiation , Gene Expression Regulation, Neoplastic , TEA Domain Transcription Factors , Pancreatic Neoplasms
4.
Mol Cancer ; 22(1): 63, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36991428

ABSTRACT

BACKGROUND: Although metastasis is the foremost cause of cancer-related death, a specialized mechanism that reprograms anchorage dependency of solid tumor cells into circulating tumor cells (CTCs) during metastatic dissemination remains a critical area of challenge. METHODS: We analyzed blood cell-specific transcripts and selected key Adherent-to-Suspension Transition (AST) factors that are competent to reprogram anchorage dependency of adherent cells into suspension cells in an inducible and reversible manner. The mechanisms of AST were evaluated by a series of in vitro and in vivo assays. Paired samples of primary tumors, CTCs, and metastatic tumors were collected from breast cancer and melanoma mouse xenograft models and patients with de novo metastasis. Analyses of single-cell RNA sequencing (scRNA-seq) and tissue staining were performed to validate the role of AST factors in CTCs. Loss-of-function experiments were performed by shRNA knockdown, gene editing, and pharmacological inhibition to block metastasis and prolong survival. RESULTS: We discovered a biological phenomenon referred to as AST that reprograms adherent cells into suspension cells via defined hematopoietic transcriptional regulators, which are hijacked by solid tumor cells to disseminate into CTCs. Induction of AST in adherent cells 1) suppress global integrin/ECM gene expression via Hippo-YAP/TEAD inhibition to evoke spontaneous cell-matrix dissociation and 2) upregulate globin genes that prevent oxidative stress to acquire anoikis resistance, in the absence of lineage differentiation. During dissemination, we uncover the critical roles of AST factors in CTCs derived from patients with de novo metastasis and mouse models. Pharmacological blockade of AST factors via thalidomide derivatives in breast cancer and melanoma cells abrogated CTC formation and suppressed lung metastases without affecting the primary tumor growth. CONCLUSION: We demonstrate that suspension cells can directly arise from adherent cells by the addition of defined hematopoietic factors that confer metastatic traits. Furthermore, our findings expand the prevailing cancer treatment paradigm toward direct intervention within the metastatic spread of cancer.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Melanoma , Neoplastic Cells, Circulating , Mice , Animals , Humans , Female , Cell Line, Tumor , Neoplastic Cells, Circulating/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Melanoma/metabolism , Lung Neoplasms/pathology , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...