Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 110(2): 771-784, 2021 02.
Article in English | MEDLINE | ID: mdl-33035537

ABSTRACT

Commercial specifications for a new biotherapeutic product are a critical component of the product's overall control strategy that ensures safety and efficacy. This paper describes strategies for setting commercial specifications as proposed by a consortium of industry development scientists. The specifications for some attributes are guided by compendia and regulatory guidance. For other product quality attributes (PQAs), product knowledge and the understanding of attribute criticality built throughout product development should drive specification setting. The foundation of PQA knowledge is an understanding of potential patient impact through an assessment of potency, PK, immunogenicity and safety. In addition to PQA knowledge, the ability of the manufacturing process to consistently meet specifications, typically assessed through statistical analyses, is an important consideration in the specification-setting process. Setting acceptance criteria that are unnecessarily narrow can impact the ability to supply product or prohibit consideration of future convenient dosage forms. Patient-centric specifications enable appropriate control over higher risk PQAs to ensure product quality for the patient, and flexibility for lower risk PQAs for a sustainable supply chain. This paper captures common strategic approaches for setting specifications for standard biotherapeutic products such as monoclonal antibodies and includes considerations for ensuring specifications are patient centric.


Subject(s)
Antibodies, Monoclonal , Patient-Centered Care , Humans
2.
Nat Struct Mol Biol ; 14(2): 106-13, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17237796

ABSTRACT

Cholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.2-A resolution, revealing a 60-A-long tunnel filled with two hydrophobic cholesteryl esters and plugged by an amphiphilic phosphatidylcholine at each end. The two tunnel openings are large enough to allow lipid access, which is aided by a flexible helix and possibly also by a mobile flap. The curvature of the concave surface of CETP matches the radius of curvature of HDL particles, and potential conformational changes may occur to accommodate larger lipoprotein particles. Point mutations blocking the middle of the tunnel abolish lipid-transfer activities, suggesting that neutral lipids pass through this continuous tunnel.


Subject(s)
Cholesterol Ester Transfer Proteins/chemistry , Cholesterol Esters/chemistry , Models, Molecular , Phosphatidylcholines/chemistry , Triglycerides/chemistry , Animals , Binding Sites , CHO Cells , Cholesterol Ester Transfer Proteins/genetics , Cricetinae , Cricetulus , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Point Mutation , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...