Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Elife ; 82019 10 03.
Article in English | MEDLINE | ID: mdl-31580259

ABSTRACT

Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.


Subject(s)
Amino Acid Transport System ASC/chemistry , Amino Acid Transport System ASC/metabolism , Glutamine/chemistry , Glutamine/metabolism , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Cryoelectron Microscopy , Humans , Protein Binding , Protein Conformation
2.
J Med Chem ; 60(18): 7835-7849, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28853885

ABSTRACT

Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.


Subject(s)
Drug Design , Fructokinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Crystallography, X-Ray , Fructokinases/chemistry , Fructokinases/metabolism , Humans , Male , Molecular Docking Simulation , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley
3.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 11): 840-845, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27827355

ABSTRACT

Crystals of phosphorylated JAK1 kinase domain were initially generated in complex with nucleotide (ADP) and magnesium. The tightly bound Mg2+-ADP at the ATP-binding site proved recalcitrant to ligand displacement. Addition of a molar excess of EDTA helped to dislodge the divalent metal ion, promoting the release of ADP and allowing facile exchange with ATP-competitive small-molecule ligands. Many kinases require the presence of a stabilizing ligand in the ATP site for crystallization. This procedure could be useful for developing co-crystallization systems with an exchangeable ligand to enable structure-based drug design of other protein kinases.


Subject(s)
Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Crystallization/methods , Edetic Acid/chemistry , Janus Kinase 1/chemistry , Magnesium/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cations, Divalent , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Humans , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Magnesium/metabolism , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera
4.
J Med Chem ; 58(18): 7164-72, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26258602

ABSTRACT

Inhibition of triacylglycerol (TAG) biosynthetic enzymes has been suggested as a promising strategy to treat insulin resistance, diabetes, dyslipidemia, and hepatic steatosis. Monoacylglycerol acyltransferase 3 (MGAT3) is an integral membrane enzyme that catalyzes the acylation of both monoacylglycerol (MAG) and diacylglycerol (DAG) to generate DAG and TAG, respectively. Herein, we report the discovery and characterization of the first selective small molecule inhibitors of MGAT3. Isoindoline-5-sulfonamide (6f, PF-06471553) selectively inhibits MGAT3 with high in vitro potency and cell efficacy. Because the gene encoding MGAT3 (MOGAT3) is found only in higher mammals and humans, but not in rodents, a transgenic mouse model expressing the complete human MOGAT3 was used to characterize the effects of 6f in vivo. In the presence of a combination of diacylglycerol acyltransferases 1 and 2 (DGAT1 and DGAT2) inhibitors, an oral administration of 6f exhibited inhibition of the incorporation of deuterium-labeled glycerol into TAG in this mouse model. The availability of a potent and selective chemical tool and a humanized mouse model described in this report should facilitate further dissection of the physiological function of MGAT3 and its role in lipid homeostasis.


Subject(s)
Acyltransferases/antagonists & inhibitors , Isoindoles/chemistry , Sulfonamides/chemistry , Acyltransferases/genetics , Animals , Cells, Cultured , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Dogs , Humans , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Mice, Transgenic , Molecular Docking Simulation , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Triglycerides/biosynthesis
5.
Structure ; 22(8): 1161-1172, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25066137

ABSTRACT

AMP-activated protein kinase (AMPK) is a principal metabolic regulator affecting growth and response to cellular stress. Comprised of catalytic and regulatory subunits, each present in multiple forms, AMPK is best described as a family of related enzymes. In recent years, AMPK has emerged as a desirable target for modulation of numerous diseases, yet clinical therapies remain elusive. Challenges result, in part, from an incomplete understanding of the structure and function of full-length heterotrimeric complexes. In this work, we provide the full-length structure of the widely expressed α1ß1γ1 isoform of mammalian AMPK, along with detailed kinetic and biophysical characterization. We characterize binding of the broadly studied synthetic activator A769662 and its analogs. Our studies follow on the heels of the recent disclosure of the α2ß1γ1 structure and provide insight into the distinct molecular mechanisms of AMPK regulation by AMP and A769662.


Subject(s)
AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/physiology , Enzyme Activation/physiology , Models, Molecular , AMP-Activated Protein Kinases/metabolism , Adenosine Monophosphate/metabolism , Allosteric Site/genetics , Biphenyl Compounds , Drug Delivery Systems , Humans , Kinetics , Ligands , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/physiology , Pyrones/metabolism , Structure-Activity Relationship , Surface Plasmon Resonance , Thiophenes/metabolism
6.
Bioorg Med Chem Lett ; 23(6): 1727-31, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23414806

ABSTRACT

A novel series of 3-O-carbamoyl erythromycin A derived analogs, labeled carbamolides, with activity versus resistant bacterial isolates of staphylococci (including macrolide and oxazolidinone resistant strains) and streptococci are reported. An (R)-2-aryl substituent on a pyrrolidine carbamate appeared to be critical for achieving potency against resistant strains. Crystal structures showed a distinct aromatic interaction between the (R)-2-aryl (3-pyridyl for 4d) substituent on the pyrrolidine and G2484 (G2505, Escherichia coli) of the Deinococcus radiodurans 50S ribosome (3.2Å resolution).


Subject(s)
Anti-Bacterial Agents/chemistry , Erythromycin/analogs & derivatives , Methylurea Compounds/chemistry , Staphylococcus/isolation & purification , Streptococcus/isolation & purification , Anti-Bacterial Agents/chemical synthesis , Binding Sites , Crystallography, X-Ray , Deinococcus/metabolism , Drug Resistance, Bacterial , Erythromycin/chemical synthesis , Escherichia coli/metabolism , Microbial Sensitivity Tests , Protein Structure, Tertiary , Pyrrolidines/chemistry , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/metabolism , Staphylococcus/drug effects , Streptococcus/drug effects
7.
J Am Chem Soc ; 134(4): 1978-81, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22280495

ABSTRACT

The asialoglycoprotein receptor (ASGPR) is a high-capacity galactose-binding receptor expressed on hepatocytes that binds its native substrates with low affinity. More potent ligands are of interest for hepatic delivery of therapeutic agents. We report several classes of galactosyl analogues with varied substitution at the anomeric, C2-, C5-, and C6-positions. Significant increases in binding affinity were noted for several trifluoromethylacetamide derivatives without covalent attachment to the protein. A variety of new ligands were obtained with affinity for ASGPR as good as or better than that of the parent N-acetylgalactosamine, showing that modification on either side of the key C3,C4-diol moiety is well tolerated, consistent with previous models of a shallow binding pocket. The galactosyl pyranose motif therefore offers many opportunities for the attachment of other functional units or payloads while retaining low-micromolar or better affinity for the ASGPR.


Subject(s)
Acetylgalactosamine/chemistry , Asialoglycoprotein Receptor/chemistry , Acetylgalactosamine/analogs & derivatives , Humans , Ligands , Molecular Structure , Stereoisomerism
8.
J Lipid Res ; 51(5): 967-74, 2010 May.
Article in English | MEDLINE | ID: mdl-19965592

ABSTRACT

The CETP inhibitor, torcetrapib, was prematurely terminated from phase 3 clinical trials due to an increase in cardiovascular and noncardiovascular mortality. Because nearly half of the latter deaths involved patients with infection, we have tested torcetrapib and other CETPIs to see if they interfere with lipopolysaccharide binding protein (LBP) or bactericidal/permeability increasing protein (BPI). No effect of these potent CETPIs on LPS binding to either protein was detected. Purified CETP itself bound weakly to LPS with a Kd >or= 25 microM compared with 0.8 and 0.5 nM for LBP and BPI, respectively, and this binding was not blocked by torcetrapib. In whole blood, LPS induced tumor necrosis factor-alpha normally in the presence of torcetrapib. Furthermore, LPS had no effect on CETP activity. We conclude that the sepsis-related mortality of the ILLUMINATE trial was unlikely due to a direct effect of torcetrapib on LBP or BPI function, nor to inhibition of an interaction of CETP with LPS. Instead, we speculate that the negative outcome seen for patients with infections might be related to the changes in plasma lipoprotein composition and metabolism, or alternatively to the known off-target effects of torcetrapib, such as aldosterone elevation, which may have aggravated the effects of sepsis.


Subject(s)
Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Infections/immunology , Quinolines/pharmacology , Acute-Phase Proteins/immunology , Acute-Phase Proteins/metabolism , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Blood Proteins/immunology , Blood Proteins/metabolism , Carrier Proteins/immunology , Carrier Proteins/metabolism , Humans , Lipopolysaccharides/metabolism , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Protein Binding/drug effects , Surface Plasmon Resonance
9.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1270-82, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19966413

ABSTRACT

A systematic analysis was undertaken to seek correlations between the integrity, purity and activity of 50S ribosomal subunit preparations from Deinococcus radiodurans and their ability to crystallize. Conditions of fermentation, purification and crystallization were varied in a search for crystals that could reliably supply an industrial X-ray crystallography program for the structure-based design of ribosomal antibiotics. A robust protocol was obtained to routinely obtain crystals that gave diffraction patterns extending to 2.9 A resolution and that were large enough to yield a complete data set from a single crystal. To our knowledge, this is the most systematic study of this challenging area so far undertaken. Ribosome crystallization is a complex multi-factorial problem and although a clear correlation of crystallization with subunit properties was not obtained, the search for key factors that potentiate crystallization has been greatly narrowed and promising areas for further inquiry are suggested.


Subject(s)
Bacterial Proteins/chemistry , Deinococcus/chemistry , Ribosomal Proteins/chemistry , Ribosome Subunits, Large, Bacterial/chemistry , Amino Acid Sequence , Bacterial Proteins/isolation & purification , Cell Fractionation , Crystallography, X-Ray , Deinococcus/genetics , Deinococcus/growth & development , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Structure, Quaternary , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , Ribosomal Proteins/isolation & purification , Ribosome Subunits, Large, Bacterial/genetics
10.
Anal Biochem ; 395(1): 77-85, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19646947

ABSTRACT

We have developed an affinity purification of the large ribosomal subunit from Deinococcus radiodurans that exploits its association with FLAG-tagged 30S subunits. Thus, capture is indirect so that no modification of the 50S is required and elution is achieved under mild conditions (low magnesium) that disrupt the association, avoiding the addition of competitor ligands or coelution of common contaminants. Efficient purification of highly pure 50S is achieved, and the chromatography simultaneously sorts the 50S into three classes according to their association status (unassociated, loosely associated, or tightly associated), improving homogeneity.


Subject(s)
Deinococcus/ultrastructure , Ribosome Subunits, Large, Bacterial/chemistry , Bacterial Proteins/analysis , Centrifugation, Density Gradient , Chromatography, Affinity , Chromatography, High Pressure Liquid , Cloning, Molecular , Databases, Protein , Gene Expression , Magnesium Chloride , Oligopeptides , Peptide Fragments/analysis , Peptides/genetics , RNA, Bacterial/analysis , RNA, Ribosomal/analysis , Recombinant Fusion Proteins , Ribosomal Proteins/analysis , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Small, Bacterial/genetics , Ribosome Subunits, Small, Bacterial/metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
11.
J Pharmacol Exp Ther ; 326(3): 801-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18577702

ABSTRACT

Sterol regulatory element-binding proteins (SREBPs) are major transcriptional regulators of cholesterol, fatty acid, and glucose metabolism. Genetic disruption of SREBP activity reduces plasma and liver levels of cholesterol and triglycerides and insulin-stimulated lipogenesis, suggesting that SREBP is a viable target for pharmacological intervention. The proprotein convertase SREBP site 1 protease (S1P) is an important posttranscriptional regulator of SREBP activation. This report demonstrates that 10 microM PF-429242 (Bioorg Med Chem Lett 17:4411-4414, 2007), a recently described reversible, competitive aminopyrrolidineamide inhibitor of S1P, inhibits endogenous SREBP processing in Chinese hamster ovary cells. The same compound also down-regulates the signal from an SRE-luciferase reporter gene in human embryonic kidney 293 cells and the expression of endogenous SREBP target genes in cultured HepG2 cells. In HepG2 cells, PF-429242 inhibited cholesterol synthesis, with an IC(50) of 0.5 microM. In mice treated with PF-429242 for 24 h, the expression of hepatic SREBP target genes was suppressed, and the hepatic rates of cholesterol and fatty acid synthesis were reduced. Taken together, these data establish that small-molecule S1P inhibitors are capable of reducing cholesterol and fatty acid synthesis in vivo and, therefore, represent a potential new class of therapeutic agents for dyslipidemia and for a variety of cardiometabolic risk factors associated with diabetes, obesity, and the metabolic syndrome.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Lipogenesis/physiology , Proprotein Convertases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Sterol Regulatory Element Binding Proteins/antagonists & inhibitors , Sterol Regulatory Element Binding Proteins/metabolism , Animals , CHO Cells , Cell Line , Cells, Cultured , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Humans , Lipogenesis/drug effects , Male , Mice , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Protease Inhibitors/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Sterol Regulatory Element Binding Proteins/biosynthesis
12.
Nat Struct Mol Biol ; 14(5): 413-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17435765

ABSTRACT

Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.


Subject(s)
Hypercholesterolemia/genetics , Mutation, Missense/physiology , Serine Endopeptidases/metabolism , Binding Sites , Humans , Hydrogen-Ion Concentration , Hypercholesterolemia/etiology , Proprotein Convertase 9 , Proprotein Convertases , Protein Binding/genetics , Protein Conformation , Receptors, LDL/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics
13.
Nat Struct Mol Biol ; 14(2): 106-13, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17237796

ABSTRACT

Cholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.2-A resolution, revealing a 60-A-long tunnel filled with two hydrophobic cholesteryl esters and plugged by an amphiphilic phosphatidylcholine at each end. The two tunnel openings are large enough to allow lipid access, which is aided by a flexible helix and possibly also by a mobile flap. The curvature of the concave surface of CETP matches the radius of curvature of HDL particles, and potential conformational changes may occur to accommodate larger lipoprotein particles. Point mutations blocking the middle of the tunnel abolish lipid-transfer activities, suggesting that neutral lipids pass through this continuous tunnel.


Subject(s)
Cholesterol Ester Transfer Proteins/chemistry , Cholesterol Esters/chemistry , Models, Molecular , Phosphatidylcholines/chemistry , Triglycerides/chemistry , Animals , Binding Sites , CHO Cells , Cholesterol Ester Transfer Proteins/genetics , Cricetinae , Cricetulus , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Point Mutation , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...