Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13422, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591891

ABSTRACT

Biological nitrification inhibition (BNI) is a plant function where root systems release antibiotic compounds (BNIs) specifically aimed at suppressing nitrifiers to limit soil-nitrate formation in the root zone. Little is known about BNI-activity in maize (Zea mays L.), the most important food, feed, and energy crop. Two categories of BNIs are released from maize roots; hydrophobic and hydrophilic BNIs, that determine BNI-capacity in root systems. Zeanone is a recently discovered hydrophobic compound with BNI-activity, released from maize roots. The objectives of this study were to understand/quantify the relationship between zeanone activity and hydrophobic BNI-capacity. We assessed genetic variability among 250 CIMMYT maize lines (CMLs) characterized for hydrophobic BNI-capacity and zeanone activity, towards developing genetic markers linked to this trait in maize. CMLs with high BNI-capacity and ability to release zeanone from roots were identified. GWAS was performed using 27,085 SNPs (with unique positions on the B73v.4 reference genome, and false discovery rate = 10), and phenotypic information for BNI-capacity and zeanone production from root systems. Eighteen significant markers were identified; three associated with specific BNI-activity (SBNI), four with BNI-activity per plant (BNIPP), another ten were common between SBNI and BNIPP, and one with zeanone release. Further, 30 annotated genes were associated with the significant SNPs; most of these genes are involved in pathways of "biological process", and one (AMT5) in ammonium regulation in maize roots. Although the inbred lines in this study were not developed for BNI-traits, the identification of markers associated with BNI-capacity suggests the possibility of using these genomic tools in marker-assisted selection to improve hydrophobic BNI-capacity in maize.


Subject(s)
Nitrification , Zea mays , Zea mays/genetics , Plant Breeding , Anti-Bacterial Agents , Polymorphism, Single Nucleotide
2.
Front Plant Sci ; 13: 1034219, 2022.
Article in English | MEDLINE | ID: mdl-36438125

ABSTRACT

Synthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in Leymus racemosus, a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices. We studied how BNI-trait improves N-uptake, and N-use, both with ammonium and nitrate fertilization, analysing representative indicators of soil nitrification inhibition, and plant metabolism. Synthesizing BNI molecules did not mean a metabolic cost since Control and BNI-isogenic-lines from ROELFS and MUNAL presented similar agronomic performance and plant development. In the soil, ROELFS-BNI and MUNAL-BNI plants decreased ammonia-oxidizing bacteria (AOB) abundance by 60% and 45% respectively, delaying ammonium oxidation without reducing the total abundance of bacteria or archaea. Interestingly, BNI-trait presented a synergistic effect with SNIs since made it also possible to decrease the AOA abundance. ROELFS-BNI and MUNAL-BNI plants showed a reduced leaf nitrate reductase (NR) activity as a consequence of lower soil NO 3 - formation and a higher amino acid content compared to BNI-trait lacking lines, indicating that the transfer of Lr#-SA was able to induce a higher capacity to assimilate ammonium. Moreover, the impact of the BNI-trait in wheat cultivars was also noticeable for nitrate fertilization, with improved N absorption, and therefore, reducing soil nitrate content.

3.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34426500

ABSTRACT

Active nitrifiers and rapid nitrification are major contributing factors to nitrogen losses in global wheat production. Suppressing nitrifier activity is an effective strategy to limit N losses from agriculture. Production and release of nitrification inhibitors from plant roots is termed "biological nitrification inhibition" (BNI). Here, we report the discovery of a chromosome region that controls BNI production in "wheat grass" Leymus racemosus (Lam.) Tzvelev, located on the short arm of the "Lr#3Nsb" (Lr#n), which can be transferred to wheat as T3BL.3NsbS (denoted Lr#n-SA), where 3BS arm of chromosome 3B of wheat was replaced by 3NsbS of L. racemosus We successfully introduced T3BL.3NsbS into the wheat cultivar "Chinese Spring" (CS-Lr#n-SA, referred to as "BNI-CS"), which resulted in the doubling of its BNI capacity. T3BL.3NsbS from BNI-CS was then transferred to several elite high-yielding hexaploid wheat cultivars, leading to near doubling of BNI production in "BNI-MUNAL" and "BNI-ROELFS." Laboratory incubation studies with root-zone soil from field-grown BNI-MUNAL confirmed BNI trait expression, evident from suppression of soil nitrifier activity, reduced nitrification potential, and N2O emissions. Changes in N metabolism included reductions in both leaf nitrate, nitrate reductase activity, and enhanced glutamine synthetase activity, indicating a shift toward ammonium nutrition. Nitrogen uptake from soil organic matter mineralization improved under low N conditions. Biomass production, grain yields, and N uptake were significantly higher in BNI-MUNAL across N treatments. Grain protein levels and breadmaking attributes were not negatively impacted. Wide use of BNI functions in wheat breeding may combat nitrification in high N input-intensive farming but also can improve adaptation to low N input marginal areas.


Subject(s)
Agriculture/methods , Chromosomes, Plant/genetics , Crops, Agricultural/growth & development , Nitrification , Nitrogen/metabolism , Plant Proteins/metabolism , Triticum/growth & development , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Triticum/genetics , Triticum/metabolism
4.
New Phytol ; 180(2): 442-451, 2008.
Article in English | MEDLINE | ID: mdl-18657214

ABSTRACT

Nitrification results in poor nitrogen (N) recovery and negative environmental impacts in most agricultural systems. Some plant species release secondary metabolites from their roots that inhibit nitrification, a phenomenon known as biological nitrification inhibition (BNI). Here, we attempt to characterize BNI in sorghum (Sorghum bicolor). In solution culture, the effect of N nutrition and plant age was studied on BNI activity from roots. A bioluminescence assay using recombinant Nitrosomonas europaea was employed to determine the inhibitory effect of root exudates. One major active constituent was isolated by activity-guided HPLC fractionations. The structure was analysed using NMR and mass spectrometry. Properties and the 70% inhibitory concentration (IC(70)) of this compound were determined by in vitro assay. Sorghum had significant BNI capacity, releasing 20 allylthiourea units (ATU) g(-1) root DW d(-1). Release of BNI compounds increased with growth stage and concentration of supply. NH4+ -grown plants released several-fold higher BNI compounds than NO3- -grown plants. The active constituent was identified as methyl 3-(4-hydroxyphenyl) propionate. BNI compound release from roots is a physiologically active process, stimulated by the presence of NH4+. Methyl 3-(4-hydroxyphenyl) propionate is the first compound purified from the root exudates of any species; this is an important step towards better understanding BNI in sorghum.


Subject(s)
Enzyme Inhibitors/metabolism , Nitrogen/metabolism , Phenols/metabolism , Propionates/metabolism , Sorghum/metabolism , Enzyme Inhibitors/isolation & purification , Hydroxylamine/pharmacology , Molecular Structure , Phenols/chemistry , Phenols/isolation & purification , Plant Exudates , Plant Roots/chemistry , Plant Roots/metabolism , Propionates/chemistry , Propionates/isolation & purification , Sorghum/chemistry
5.
J Agric Food Chem ; 55(4): 1385-8, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-17243702

ABSTRACT

Nitrification inhibitory activity was found in root tissue extracts of Brachiaria humidicola, a tropical pasture grass. Two active inhibitory compounds were isolated by activity-guided fractionation, using recombinant Nitrosomonas europaea containing luxAB genes derived from the bioluminescent marine gram-negative bacterium Vibrio harveyi. The compounds were identified as methyl-p-coumarate and methyl ferulate, respectively. Their nitrification inhibitory properties were confirmed in chemically synthesized preparations of each. The IC50 values of chemically synthesized preparations were 19.5 and 4.4 microM, respectively. The ethyl, propyl, and butyl esters of p-coumaric and ferulic acids inhibited nitrification, whereas the free acid forms did not show inhibitory activity.


Subject(s)
Nitrogen/antagonists & inhibitors , Plant Roots/chemistry , Poaceae/chemistry , Ammonia/metabolism , Coumaric Acids/pharmacology , Methylation , Nitrates/metabolism , Nitrites/metabolism , Nitrogen/metabolism , Nitrosomonas/genetics , Nitrosomonas/metabolism , Propionates , Vibrio/genetics , Vibrio/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...