Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 98(4): 694-711, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26235316

ABSTRACT

Chlamydia trachomatis is an obligate intracellular human pathogen with a biphasic developmental life cycle. The infectious elementary bodies (EBs) enter a host cell where they transform into reticulate bodies (RBs) that use cellular metabolites to multiply. Re-infection of an infected cell during the replicative phase of chlamydial development may prevent formation of infectious EBs, interrupting the infectious cycle. Here, we report that Glucose Regulated Protein 96 (Gp96), a chaperone for cell surface receptors, binds to and facilitates adherence and entry of C. trachomatis. Gp96 expression was increased early in infection in a MAP kinase-dependent way, thereby increasing chlamydial adherence and invasion. Gp96 co-precipitated with Protein Disulphide Isomerase (PDI), known to be involved in chlamydial host cell entry. During the replicative phase, Gp96 was depleted from infected cells and shed into the supernatant by activation of metalloproteinase TACE (ADAM17). Loss of Gp96 also reduced the activity of PDI on the cell surface. Reduced surface display of Gp96 prevented chlamydial re-infection in a TACE-dependent manner in cell lines but also in primary cells derived from human fimbriae, the natural site of chlamydial infection. Our data suggest a role of infection-induced Gp96 shedding in the protection of the chlamydial replicative niche.


Subject(s)
Chlamydia trachomatis/physiology , Membrane Glycoproteins/metabolism , ADAM Proteins/metabolism , ADAM17 Protein , Bacterial Adhesion , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/microbiology , HeLa Cells , Humans , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics
2.
Article in English | MEDLINE | ID: mdl-26082896

ABSTRACT

Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.


Subject(s)
Intracellular Membranes/chemistry , Proteome/analysis , Vacuoles/chemistry , Vacuoles/microbiology , Bacterial Physiological Phenomena , Host-Pathogen Interactions , Humans , Mass Spectrometry , Proteomics
3.
PLoS Pathog ; 11(4): e1004846, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25906164

ABSTRACT

The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.


Subject(s)
Chlamydia Infections/metabolism , Chlamydia trachomatis/pathogenicity , Host-Parasite Interactions/physiology , Receptor, EphA2/metabolism , Apoptosis/physiology , Blotting, Western , Cell Adhesion/physiology , Cell Movement/physiology , Cell Separation , Chlamydia trachomatis/metabolism , Flow Cytometry , HeLa Cells , Humans , Immunoprecipitation , Microscopy, Fluorescence , Mutagenesis, Site-Directed , RNA, Small Interfering , Transfection
4.
mBio ; 5(5): e01802-14, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25293760

ABSTRACT

Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. Importance: Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell.


Subject(s)
Actins/metabolism , Chlamydia trachomatis/physiology , Epithelial Cells/microbiology , Exocytosis , Inclusion Bodies/microbiology , Septins/metabolism , HeLa Cells , Humans , Protein Multimerization
5.
Biochem J ; 431(1): 103-11, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20653565

ABSTRACT

Distribution of selenium (Se) within the mammalian body is mediated by SePP (selenoprotein P), an Se-rich glycoprotein secreted by hepatocytes. Genetic and biochemical evidence indicate that the endocytic receptors ApoER2 (apolipoprotein E receptor 2) and megalin mediate tissue-specific SePP uptake. In the present study megalin-mutant mice were fed on diets containing adequate (0.15 p.p.m.) or low (0.08 p.p.m.) Se content and were analysed for tissue and plasma Se levels, cellular GPx (glutathione peroxidase) activities and protein expression patterns. Megalin-mutant mice displayed increased urinary Se loss, which correlated with SePP excretion in their urine. Accordingly, serum Se and SePP levels were significantly reduced in megalin-mutant mice, reaching marginal levels on the low-Se diet. Moreover, kidney Se content and expression of renal selenoproteins were accordingly reduced, as was SePP internalization along the proximal tubule epithelium. Although GPx4 expression was not altered in testis, Se and GPx activity in liver and brain were significantly reduced. When fed on a low-Se diet, megalin-mutant mice developed impaired movement co-ordination, but no astrogliosis. These findings suggest that megalin prevents urinary SePP loss and participates in brain Se/SePP uptake.


Subject(s)
Brain/metabolism , Kidney/metabolism , Liver/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Mutation , Selenium/metabolism , Selenoprotein P/metabolism , Animals , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Mice , Rats , Selenium/blood , Selenium/urine , Selenoprotein P/blood , Selenoprotein P/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...