Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(9)2023 08 29.
Article in English | MEDLINE | ID: mdl-37766235

ABSTRACT

We present the results of a randomized, double-blind, placebo-controlled, multi-center clinical trial phase I/II of the tolerability, safety, and immunogenicity of the inactivated whole virion concentrated purified coronavirus vaccine CoviVac in volunteers aged 18-60 and open multi-center comparative phase IIb clinical trial in volunteers aged 60 years and older. The safety of the vaccine was assessed in 400 volunteers in the 18-60 age cohort who received two doses of the vaccine (n = 300) or placebo (n = 100) and in 200 volunteers in 60+ age cohort all of whom received three doses of the vaccine. The studied vaccine has shown good tolerability and safety. No deaths, serious adverse events (AEs), or other significant AEs related to vaccination have been detected. The most common AE in vaccinated participants was pain at the injection site (p < 0.05). Immunogenicity assessment in stage 3 of Phase II was performed on 167 volunteers (122 vaccinated and 45 in Placebo Group) separately for the participants who were anti-SARS-CoV-2 nAB negative (69/122 in Vaccine Group and 28/45 in Placebo Group) or positive (53/122 in Vaccine Group and 17/45 in Placebo Group) at screening. On Day 42 after the 1st vaccination, the seroconversion rate in participants who were seronegative at screening was 86.9%, with the average geometric mean neutralizing antibody (nAB) titer of 1:20. A statistically significant (p < 0.05) increase in IFN-γ production by peptide-stimulated T-cells was observed at Days 14 and 21 after the 1st vaccination. In participants who were seropositive at screening but had nAB titers below 1:256, the rate of fourfold increase in nAB levels was 85.2%, while in the participants with nAB titers > 1:256, the rate of fourfold increase in nAB levels was below 45%; the participants who were seropositive at screening of the 2nd vaccination did not lead to a significant increase in nAB titers. In conclusion, inactivated vaccine CoviVac has shown good tolerability and safety, with over 85% NT seroconversion rates after complete vaccination course in participants who were seronegative at screening in both age groups: 18-60 and 60+. In participants who were seropositive at screening and had nAB titers below 1:256, a single vaccination led to a fourfold increase in nAB levels in 85.2% of cases. These findings indicate that CoviVac can be successfully used both for primary vaccination in a two-dose regimen and for booster vaccination as a single dose in individuals with reduced neutralizing antibody levels.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Middle Aged , Aged , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Vaccines, Attenuated , Antibodies, Neutralizing , Antibodies, Viral
2.
Front Immunol ; 13: 907341, 2022.
Article in English | MEDLINE | ID: mdl-35711442

ABSTRACT

Background: Effective response to emerging pandemic threats is complicated by the need to develop specific vaccines and other medical products. The availability of broadly specific countermeasures that could be deployed early in the pandemic could significantly alter its course and save countless lives. Live attenuated vaccines (LAVs) were shown to induce non-specific protection against a broad spectrum of off-target pathogens by stimulating innate immune responses. The purpose of this study was to evaluate the effect of immunization with bivalent Oral Poliovirus Vaccine (bOPV) on the incidence of COVID-19 and other acute respiratory infections (ARIs). Methods and Findings: A randomized parallel-group comparative study was conducted in Kirov Medical University. 1115 healthy volunteers aged 18 to 65 were randomized into two equal groups, one of which was immunized orally with a single dose of bOPV "BiVac Polio" and another with placebo. The study participants were monitored for three months for respiratory illnesses including COVID-19. The endpoint was the incidence of acute respiratory infections and laboratory confirmed COVID-19 in both groups during 3 months after immunization. The number of laboratory-confirmed cases of COVID-19 was significantly lower in the vaccinated group than in placebo (25 cases vs. 44, p=0.036). The difference between the overall number of clinically diagnosed respiratory illnesses in the two groups was not statistically significant. Conclusions: Immunization with bOPV reduced the number of laboratory-confirmed COVID-19 cases, consistent with the original hypothesis that LAVs induce non-specific protection against off-target infections. The findings are in line with previous observations of the protective effects of OPV against seasonal influenza and other viral and bacterial pathogens. The absence of a statistically significant effect on the total number of ARIs may be due to the insufficient number of participants and heterogeneous etiology of ARIs. OPV could be used to complement specific coronavirus vaccines, especially in regions of the world where the vaccines are unavailable, and as a stopgap measure for urgent response to future emerging infections. Clinical trial registration number NCT05083039 at clinicaltrals.gov https://clinicaltrials.gov/ct2/show/NCT05083039?term=NCT05083039&draw=2&rank=1.


Subject(s)
COVID-19 , Poliomyelitis , Respiratory Tract Infections , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Incidence , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...