Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ChemistryOpen ; 13(7): e202300260, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308174

ABSTRACT

Silicon and Germanium oxide (SiOx and GeOx) nanostructures are promising materials for energy storage applications due to their potentially high energy density, large lithiation capacity (~10X carbon), low toxicity, low cost, and high thermal stability. This work reports a unique approach to achieving controlled synthesis of SiOx and GeOx nanostructures via photonic curing. Unlike conventional methods like rapid thermal annealing, quenching during pulsed photonic curing occurs rapidly (sub-millisecond), allowing the trapping of metastable states to form unique phases and nanostructures. We explored the possible underlying mechanism of photonic curing by incorporating laws of photophysics, photochemistry, and simulated temperature profile of thin film. The results show that photonic curing of spray coated 0.1 M molarity Si and Ge Acetyl Acetate precursor solution, at total fluence 80 J cm-2 can yield GeOx and SiOx nanostructures. The as-synthesized nanostructures are ester functionalized due to photoinitiated chemical reactions in thin film during photonic curing. Results also showed that nanoparticle size changes from ~48 nm to ~11 nm if overall fluence is increased by increasing the number of pulses. These results are an important contribution towards large-scale synthesis of the Ge and Si oxide nanostructured materials which is necessary for next-generation energy storage devices.

2.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686125

ABSTRACT

Dielectric capacitors present many advantages for large-scale energy storage, but they presently require higher energy density. We demonstrate novel high energy density polymer-nanoparticle composite capacitors utilizing thiol-ene click chemistry surface groups to bond the nanoparticles covalently to the polymer matrix. Interfacial effects in composites cannot be observed directly, and in our previous work, we examined the nanoparticle-polymer interface in silico. In this work, we experimentally examine the five surface functionalizations modeled previously, fabricating high energy density thin film capacitors to test our predictions. Results from this study, in conjunction with properties previously determined in silico, further improve the understanding of the role of surface functionalizations in composites prepared using click chemistry. The coating density of the surface functionalizations is shown to be a key factor in relating our computational results to experimental results. We show how using both coating density and our previous modeling in combination allows for prescreening of surface functionalizations for future composites, reducing experimental cost. We also demonstrate high energy density capacitors with ~20 J/cm3.


Subject(s)
Click Chemistry , Nanoparticles , Physical Phenomena , Polymers , Sulfhydryl Compounds
3.
RSC Adv ; 10(28): 16817-16825, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-35498836

ABSTRACT

We describe the instantaneous fabrication of a highly porous three-dimensional (3D) nanostructured manganese oxides-reduced graphitic oxide (MnO x -rGO) electrode by using a pulse-photonic processing technique. Such nanostructures facilitate the movement of ions/electrons and offer an extremely high surface area for the electrode/electrolyte interaction. The electrochemical performance was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) with 1 M KOH as the electrolyte. The as-prepared thin film electrode exhibits excellent electrochemical performance and an ultra-long lifetime by retaining 90% of the initial capacitance even after 100 000 GCD cycles at constant areal current density of 0.4 mA cm-2. We attribute this excellent lifetime performance to the conductive reduced graphitic oxide, synergistic effects of carbon composite and the metal oxides, and the unique porous nanostructure. Such highly porous morphology also enhances the structural stability of the electrode by buffering the volume changes during the redox processes.

4.
RSC Adv ; 10(66): 40234-40243, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-35520879

ABSTRACT

We report a novel photonic processing technique as a next-generation cost-effective technique to instantaneously synthesize nanostructured manganese-cobalt mixed oxide reduced graphitic oxide (Mn-Co-rGO) for supercapacitor electrodes in energy storage applications. The active material was prepared directly on highly conductive Pt-Si substrate, eliminating the need for a binder. Surface morphological analysis showed that the as-prepared electrodes have a highly porous and resilient nanostructure that facilitates the ion/electron movement during faradaic redox reactions and buffers the volume changes during charge-discharge processes, leading to the improved structural integrity of the electrode. The presence of distinct redox peaks, due to faradaic redox reactions, at all scan rates in the cyclic voltammetry (CV) curves and non-linear nature of the charge-discharge curves suggest the pseudocapacitive charge storage mechanism of the electrode. The electrochemical stability and the life cycle were examined by carrying out galvanostatic charge-discharge (GCD) measurements at 0.40 mA cm-2 constant areal current density for 80 000 cycles, and the electrode showed 95% specific capacitance retention, exhibiting excellent electrochemical stability and an ultra-long cycle life. Such remarkable electrochemical performance could be attributed to the enhanced conductivity of the electrode, the synergistic effect of metal ions with rGO, and the highly porous morphology, which provides large specific surface area for electrode/electrolyte interaction and facilitates the ion transfer.

SELECTION OF CITATIONS
SEARCH DETAIL