Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895793

ABSTRACT

Glancing angle deposition (GLAD) of CdTe can produce a cubic, hexagonal, or mixed phase crystal structure depending upon the oblique deposition angles (Φ) and substrate temperature. GLAD CdTe films are prepared at different Φ at room temperature (RT) and a high temperature (HT) of 250 °C and used as interlayers between the n-type hexagonal CdS window layer and the p-type cubic CdTe absorber layer to investigate the role of interfacial tailoring at the CdS/CdTe heterojunction in photovoltaic (PV) device performance. The Φ = 80° RT GLAD CdTe interlayer and CdS both have the hexagonal structure, which reduces lattice mismatch at the CdS/CdTe interface and improves electronic quality at the heterojunction for device performance optimization. The device performance of HT CdS/CdTe solar cells with Φ = 80° RT with 50 to 350 nm thick GLAD CdTe interlayers is evaluated in which a 250 nm interlayer device shows the best device performance with a 0.53 V increase in open-circuit voltage and fill-factor product and a 0.73% increase in absolute efficiency compared to the HT baseline PV device without an interlayer.

3.
Insects ; 12(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34940216

ABSTRACT

The information available on the diversity of ant species and their distribution and interaction with forest health in Nepal remains limited. As part of a nationwide project on forest health, we conducted inventories to assess the diversity and distribution of forest ants and their role in forest management in Nepal. Ants were collected from 187 plots of 10 m × 10 m size along the north-south belt transects in eastern, central, and western Nepal. We used vegetation beating, sweeping, and hand collection methods in selected forest types. In each transect, we designed six plots in each major forest type (Sal, Schima-Castanopsis, and broadleaf mixed forests) and three plots each in deodar, Alnus, riverine, and Cryptomeria forests. We recorded 70 ant species from 36 genera and six subfamilies. This includes five genera and nine species new for the country, as well as eight tramp species, four of which are major ecological, agricultural, and/or household pests. Our study indicates that forest ant species richness is high in western Nepal and the Siwaliks, and it decreases as elevation increases. The high diversity of ant species in the forests of Nepal needs to be assessed with further exploration using multiple sampling methods covering all seasons and forest types. Ants can be useful indicators for ecosystem management and human impacts on forests. Reports of invasive ants in Nepalese forests indicate the relevance of urgent interventions through sustainable forest management initiatives to prevent future incursions.

4.
ACS Appl Mater Interfaces ; 13(4): 4923-4934, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33470116

ABSTRACT

Perovskite solar cell device performance is affected by optical and electronic losses. To minimize these losses in solar cells, it is important to identify their sources. Here, we report the optical and electronic losses arising from physically mixed interfacial layers between the adjacent component materials in highly efficient two terminal (2T) all-perovskite tandem, single-junction wide-bandgap, and single-junction narrow-bandgap perovskite-based solar cells. Physically mixed interfacial layers as the sources of optical and electronic losses are identified from spectroscopic ellipsometry measurements and data analysis followed by comparisons of simulated and measured external quantum efficiency spectra. Parasitic absorbance in the physically mixed regions between silver metal electrical contacts and electron transport layers (ETLs) near the back contact and a physical mixture of commercial indium tin oxide and hole transport layers (HTL) near the front electrical contact lead to substantial optical loss. A lower-density void + perovskite nucleation layer formed during perovskite deposition at the interface between the perovskite absorber layer and the HTL causes electronic losses because of incomplete collection of photogenerated carriers likely originating from poor coverage and passivation of the initially nucleating grains.

5.
Zookeys ; 1006: 99-136, 2020.
Article in English | MEDLINE | ID: mdl-33442321

ABSTRACT

The location of Nepal in the Central Himalaya promotes high habitat and species diversity. Ant diversity is likely high, but there have been few studies of the diversity and distribution of ants in Nepal. Here we present an updated checklist list of Nepalese ants that includes 128 named species in 48 genera and eight subfamilies. Among these species, 21 species have a type locality from Nepal, nine species are endemic to Nepal, and three are introduced species. We add six new ant records for Nepal, namely Harpegnathos venator, Monomorium pharaonis, Nylanderia bourbonica, Odontoponera denticulata, Polyrhachis tyrannica and Pseudoneoponera bispinosa. The checklist presents distribution records for Nepalese ant species and provides comparisons with the neighboring countries of China and India.

6.
Sci Rep ; 9(1): 19015, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31831793

ABSTRACT

Electrical transport parameters for active layers in silicon (Si) wafer solar cells are determined from free carrier optical absorption using non-contacting optical Hall effect measurements. Majority carrier transport parameters [carrier concentration (N), mobility (µ), and conductivity effective mass (m*)] are determined for both the n-type emitter and p-type bulk wafer Si of an industrially produced aluminum back surface field (Al-BSF) photovoltaic device. From measurements under 0 and ±1.48 T external magnetic fields and nominally "dark" conditions, the following respective [n, p]-type Si parameters are obtained: N = [(3.6 ± 0.1) × 1018 cm-3, (7.6 ± 0.1) × 1015 cm-3]; µ = [166 ± 6 cm2/Vs, 532 ± 12 cm2/Vs]; and m* = [(0.28 ± 0.03) × me, (0.36 ± 0.02) × me]. All values are within expectations for this device design. Contributions from photogenerated carriers in both regions of the p-n junction are obtained from measurements of the solar cell under "light" 1 sun illumination (AM1.5 solar irradiance spectrum). From analysis of combined dark and light optical Hall effect measurements, photogenerated minority carrier transport parameters [minority carrier concentration (Δp or Δn) and minority carrier mobility (µh or µe)] under 1 sun illumination for both n- and p-type Si components of the solar cell are determined. Photogenerated minority carrier concentrations are [(7.8 ± 0.2) × 1016 cm-3, (2.2 ± 0.2) × 1014 cm-3], and minority carrier mobilities are [331 ± 191 cm2/Vs, 766 ± 331 cm2/Vs], for the [n, p]-type Si, respectively, values that are within expectations from literature. Using the dark majority carrier concentration and the effective equilibrium minority carrier concentration under 1 sun illumination, minority carrier effective lifetime and diffusion length are calculated in the n-type emitter and p-type wafer Si with the results also being consistent with literature. Solar cell device performance parameters including photovoltaic device efficiency, open circuit voltage, fill factor, and short circuit current density are also calculated from these transport parameters obtained via optical Hall effect using the diode equation and PC1D solar cell simulations. The calculated device performance parameters are found to be consistent with direct current-voltage measurement demonstrating the validity of this technique for electrical transport property measurements of the semiconducting layers in complete Si solar cells. To the best of our knowledge, this is the first method that enables determination of both minority and majority carrier transport parameters in both active layers of the p-n junction in a complete solar cell.

7.
Nanotechnology ; 27(29): 295702, 2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27285310

ABSTRACT

We report optical properties of iron pyrite (FeS2) determined from ex situ spectroscopic ellipsometry measurements made on both a commercially available bulk single crystal and nanocrystalline thin film over a spectral range of 0.735-5.887 eV. The complex dielectric function, ε (E) = Îµ 1 (E) + iε 2 (E), spectra have been determined by fitting a layered parametric model to the ellipsometric measurements. Spectra in ε are modeled using a Kramers-Kronig consistent critical point parabolic band model involving seven critical points for the bulk single crystal and four critical points for the nanocrystalline film. Absorption coefficient spectra for both types of samples are also determined from ε. Critical point features in the nanocrystalline films are broader, have lower amplitude and lower energy critical points detected having a small blue shift when compared to the single crystal sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...