Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(2): 1072-1081, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174238

ABSTRACT

Utilization of efficient, stable and reusable catalysts for wastewater treatment and catalytic elimination of toxic pollutants is a challenge among researchers. This present work shows the synthesis of high-surface-activity Ag nanoparticle decorated gC3N4 modified MCM-41 and its efficiency towards catalytic hydrogenation of organic dye in the presence of reducing agent NaBH4. The proposed mechanism is based on the transfer of H+ and 2e- between the dye and the catalyst. Adsorption of dye stuff on the catalyst is a rate-determining step and is accelerated by the MCM-41 support which enhances the surface area. The catalytic efficiency and optimum time requirement were examined through the adsorption-desorption equilibrium, pseudo-first-order reaction kinetic model for the dye. The result obtained was 98% catalytic efficiency followed by the catalytic hydrogenation reaction.

2.
RSC Adv ; 13(45): 31756-31771, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37908651

ABSTRACT

Present article represents the fabrication of plasmonic Ag/ZIF-8 composite and its effect on antibacterial, haemolytic and photocatalytic degradation of antibiotics. Ag/ZIF-8 was prepared by varying molar concentrations (1 mM, 2.5 mM, and 5 mM) of AgNO3 into ZIF-8 using NaBH4 as a reducing agent by the sol-gel process. The material was then characterised using the XRD, XPS, FTIR, SEM, HRTEM, UVDRS, BET and EIS techniques. When it comes to breaking down the antibiotic CIP, the optimised Ag2.5/ZIF-8 exhibits the strongest photocatalytic capability, with a degradation efficiency of 82.3% after 90 minutes. Due to LSPR (Localised Surface Plasmon Resonance) as well as the efficient movement and separation of the interfaces of photo-generated charge carriers in Ag2.5/ZIF-8 may be the causes of this increase in photocatalytic degradation. The effect of several parameters, such as pH, a variety of catalysts, varying dose concentrations, scavenging and sustainability are being investigated. The para benzoquinone (OH˙) and citric acid (h+) the primary active species in the photocatalytic breakdown pathway, according to trapping study. Whereas, Ag5/ZIF-8 was optimised for greater antibacterial activity against S. aureus and E. coli due to the synergistic impact of Ag+ and Zn2+ in Ag5/ZIF-8 and in haemolytic experiment, all samples were discovered to be non-toxic to blood cells. Overall, the synthesised compound was discovered to be a reusable, affordable catalyst for water remediation that can also be used in biomedicine.

3.
Environ Sci Pollut Res Int ; 29(28): 43179-43190, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35091931

ABSTRACT

Herbicide application and residue accumulation in farm soils have deleterious effects on non-target fauna such as earthworms. Although previous studies have documented both positive and deleterious effects of herbicides on soil biota, reports are rare on possible toxicity reduction by raising soil total antioxidant capacity (TAC). Here we review the impact of pretilachlor, a herbicide on the morpho-histology and physiology of the earthworm Eudrilus eugeniae in soil amended with farmyard manure (FYM), poultry manure (PM) and vermimanure (VM), sources of antioxidants over a period of 168 h. The results indicated a significant spike in the TAC of amended soils relative to control. Dermal undulation, setal aberrations, muscular anomaly, protein and lipid peroxidation variations in the activities of lactate dehydrogenase (LDH) and catalase (CAT) were significantly less in animals from amended soils. The maximum percent increase in protein (314%) and reductions in LPX (87%), LDH (87.9%) and CAT (87.3%) were observed in the earthworm from VM-amended soil. The increase in TAC was also maximum (109.9%) in soil amended with VM. A significant negative correlation between soil TAC with the biochemical parameters was observed and confirmed through receiver operator characteristics (ROC) and principal component analysis (PCA). The novelty of the present study includes exploring the missing link between the antioxidant level of organically amended soil and the herbicide-induced oxidative stress in the earthworm E. eugeniae. We concluded that soils with high levels of antioxidants could reduce oxidative damage in E eugeniae due to herbicide toxicity.


Subject(s)
Herbicides , Oligochaeta , Soil Pollutants , Animals , Antioxidants/metabolism , Herbicides/analysis , Manure/analysis , Soil/chemistry , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...