Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
EcoSal Plus ; 11(1): eesp00022023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37220074

ABSTRACT

EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.


Subject(s)
Escherichia coli K12 , Escherichia coli Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli K12/genetics , Databases, Genetic , Software , Computational Biology , Escherichia coli Proteins/metabolism
2.
Front Microbiol ; 12: 711077, 2021.
Article in English | MEDLINE | ID: mdl-34394059

ABSTRACT

The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.

3.
Brief Bioinform ; 22(1): 109-126, 2021 01 18.
Article in English | MEDLINE | ID: mdl-31813964

ABSTRACT

MOTIVATION: Biological systems function through dynamic interactions among genes and their products, regulatory circuits and metabolic networks. Our development of the Pathway Tools software was motivated by the need to construct biological knowledge resources that combine these many types of data, and that enable users to find and comprehend data of interest as quickly as possible through query and visualization tools. Further, we sought to support the development of metabolic flux models from pathway databases, and to use pathway information to leverage the interpretation of high-throughput data sets. RESULTS: In the past 4 years we have enhanced the already extensive Pathway Tools software in several respects. It can now support metabolic-model execution through the Web, it provides a more accurate gap filler for metabolic models; it supports development of models for organism communities distributed across a spatial grid; and model results may be visualized graphically. Pathway Tools supports several new omics-data analysis tools including the Omics Dashboard, multi-pathway diagrams called pathway collages, a pathway-covering algorithm for metabolomics data analysis and an algorithm for generating mechanistic explanations of multi-omics data. We have also improved the core pathway/genome databases management capabilities of the software, providing new multi-organism search tools for organism communities, improved graphics rendering, faster performance and re-designed gene and metabolite pages. AVAILABILITY: The software is free for academic use; a fee is required for commercial use. See http://pathwaytools.com. CONTACT: pkarp@ai.sri.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Briefings in Bioinformatics online.


Subject(s)
Genomics/methods , Metabolomics/methods , Software/standards , Systems Biology/methods , Animals , Humans
4.
Nucleic Acids Res ; 48(D1): D445-D453, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31586394

ABSTRACT

MetaCyc (MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains 2749 pathways derived from more than 60 000 publications, making it the largest curated collection of metabolic pathways. The data in MetaCyc are evidence-based and richly curated, resulting in an encyclopedic reference tool for metabolism. MetaCyc is also used as a knowledge base for generating thousands of organism-specific Pathway/Genome Databases (PGDBs), which are available in BioCyc.org and other genomic portals. This article provides an update on the developments in MetaCyc during September 2017 to August 2019, up to version 23.1. Some of the topics that received intensive curation during this period include cobamides biosynthesis, sterol metabolism, fatty acid biosynthesis, lipid metabolism, carotenoid metabolism, protein glycosylation, antibiotics and cytotoxins biosynthesis, siderophore biosynthesis, bioluminescence, vitamin K metabolism, brominated compound metabolism, plant secondary metabolism and human metabolism. Other additions include modifications to the GlycanBuilder software that enable displaying glycans using symbolic representation, improved graphics and fonts for web displays, improvements in the PathoLogic component of Pathway Tools, and the optional addition of regulatory information to pathway diagrams.


Subject(s)
Databases, Factual , Genomics/methods , Metabolic Networks and Pathways , Metabolomics/methods , Software , Animals , Enzymes/genetics , Enzymes/metabolism , Humans , Plants/genetics , Plants/metabolism
5.
Brief Bioinform ; 20(4): 1085-1093, 2019 07 19.
Article in English | MEDLINE | ID: mdl-29447345

ABSTRACT

BioCyc.org is a microbial genome Web portal that combines thousands of genomes with additional information inferred by computer programs, imported from other databases and curated from the biomedical literature by biologist curators. BioCyc also provides an extensive range of query tools, visualization services and analysis software. Recent advances in BioCyc include an expansion in the content of BioCyc in terms of both the number of genomes and the types of information available for each genome; an expansion in the amount of curated content within BioCyc; and new developments in the BioCyc software tools including redesigned gene/protein pages and metabolite pages; new search tools; a new sequence-alignment tool; a new tool for visualizing groups of related metabolic pathways; and a facility called SmartTables, which enables biologists to perform analyses that previously would have required a programmer's assistance.


Subject(s)
Genome, Microbial , Metabolic Networks and Pathways , Software , Computational Biology , Databases, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Genomics , Internet , Models, Biological , Search Engine
6.
EcoSal Plus ; 8(1)2018 11.
Article in English | MEDLINE | ID: mdl-30406744

ABSTRACT

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality and on nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.


Subject(s)
Databases, Genetic , Escherichia coli K12/genetics , Genome, Bacterial , Software , Computational Biology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Internet , Metabolic Flux Analysis , Metabolic Networks and Pathways/genetics , User-Computer Interface
7.
Nucleic Acids Res ; 46(D1): D633-D639, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29059334

ABSTRACT

MetaCyc (https://MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains more than 2570 pathways derived from >54 000 publications, making it the largest curated collection of metabolic pathways. The data in MetaCyc is strictly evidence-based and richly curated, resulting in an encyclopedic reference tool for metabolism. MetaCyc is also used as a knowledge base for generating thousands of organism-specific Pathway/Genome Databases (PGDBs), which are available in the BioCyc (https://BioCyc.org) and other PGDB collections. This article provides an update on the developments in MetaCyc during the past two years, including the expansion of data and addition of new features.


Subject(s)
Databases, Factual , Enzymes/metabolism , Metabolic Networks and Pathways , Animals , Archaea/metabolism , Bacteria/metabolism , Data Curation , Databases, Chemical , Databases, Protein , Humans , Internet , Phylogeny , Plants/metabolism , Software , Species Specificity
8.
Nucleic Acids Res ; 45(D1): D543-D550, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899573

ABSTRACT

EcoCyc (EcoCyc.org) is a freely accessible, comprehensive database that collects and summarizes experimental data for Escherichia coli K-12, the best-studied bacterial model organism. New experimental discoveries about gene products, their function and regulation, new metabolic pathways, enzymes and cofactors are regularly added to EcoCyc. New SmartTable tools allow users to browse collections of related EcoCyc content. SmartTables can also serve as repositories for user- or curator-generated lists. EcoCyc now supports running and modifying E. coli metabolic models directly on the EcoCyc website.


Subject(s)
Computational Biology/methods , Databases, Genetic , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Energy Metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways , Signal Transduction , Software , Transcription Factors/metabolism , Web Browser
9.
Nucleic Acids Res ; 44(D1): D471-80, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26527732

ABSTRACT

The MetaCyc database (MetaCyc.org) is a freely accessible comprehensive database describing metabolic pathways and enzymes from all domains of life. The majority of MetaCyc pathways are small-molecule metabolic pathways that have been experimentally determined. MetaCyc contains more than 2400 pathways derived from >46,000 publications, and is the largest curated collection of metabolic pathways. BioCyc (BioCyc.org) is a collection of 5700 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems, and pathway-hole fillers. The BioCyc website offers a variety of tools for querying and analyzing PGDBs, including Omics Viewers and tools for comparative analysis. This article provides an update of new developments in MetaCyc and BioCyc during the last two years, including addition of Gibbs free energy values for compounds and reactions; redesign of the primary gene/protein page; addition of a tool for creating diagrams containing multiple linked pathways; several new search capabilities, including searching for genes based on sequence patterns, searching for databases based on an organism's phenotypes, and a cross-organism search; and a metabolite identifier translation service.


Subject(s)
Databases, Chemical , Enzymes/metabolism , Metabolic Networks and Pathways , Databases, Genetic , Electron Transport , Genome , Internet , Metabolic Networks and Pathways/genetics , Software
10.
Brief Bioinform ; 17(5): 877-90, 2016 09.
Article in English | MEDLINE | ID: mdl-26454094

ABSTRACT

Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms.


Subject(s)
Genome , Computational Biology , Genomics , Internet , Metabolic Networks and Pathways , Software Design , Systems Biology
11.
EcoSal Plus ; 6(1)2014 May.
Article in English | MEDLINE | ID: mdl-26442933

ABSTRACT

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality and on nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review provides a detailed description of the data content of EcoCyc and of the procedures by which this content is generated.

12.
Nucleic Acids Res ; 42(Database issue): D459-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24225315

ABSTRACT

The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible database describing metabolic pathways and enzymes from all domains of life. MetaCyc pathways are experimentally determined, mostly small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains >2100 pathways derived from >37,000 publications, and is the largest curated collection of metabolic pathways currently available. BioCyc (BioCyc.org) is a collection of >3000 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems and pathway-hole fillers. Additions to BioCyc over the past 2 years include YeastCyc, a PGDB for Saccharomyces cerevisiae, and 891 new genomes from the Human Microbiome Project. The BioCyc Web site offers a variety of tools for querying and analysis of PGDBs, including Omics Viewers and tools for comparative analysis. New developments include atom mappings in reactions, a new representation of glycan degradation pathways, improved compound structure display, better coverage of enzyme kinetic data, enhancements of the Web Groups functionality, improvements to the Omics viewers, a new representation of the Enzyme Commission system and, for the desktop version of the software, the ability to save display states.


Subject(s)
Databases, Chemical , Enzymes/metabolism , Metabolic Networks and Pathways , Enzymes/chemistry , Enzymes/classification , Gene Ontology , Genome , Internet , Kinetics , Metabolic Networks and Pathways/genetics , Polysaccharides/metabolism , Software
13.
Nucleic Acids Res ; 41(Database issue): D605-12, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23143106

ABSTRACT

EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.


Subject(s)
Databases, Genetic , Escherichia coli K12/genetics , Binding Sites , Escherichia coli K12/metabolism , Escherichia coli Proteins/classification , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Internet , Membrane Transport Proteins/classification , Membrane Transport Proteins/metabolism , Models, Genetic , Molecular Sequence Annotation , Phenotype , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Systems Biology , Transcription Factors/metabolism , Transcription, Genetic
14.
Nucleic Acids Res ; 40(Database issue): D742-53, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22102576

ABSTRACT

The MetaCyc database (http://metacyc.org/) provides a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains more than 1800 pathways derived from more than 30,000 publications, and is the largest curated collection of metabolic pathways currently available. Most reactions in MetaCyc pathways are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes and literature citations. BioCyc (http://biocyc.org/) is a collection of more than 1700 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference database, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs contain additional features, including predicted operons, transport systems and pathway-hole fillers. The BioCyc website and Pathway Tools software offer many tools for querying and analysis of PGDBs, including Omics Viewers and comparative analysis. New developments include a zoomable web interface for diagrams; flux-balance analysis model generation from PGDBs; web services; and a new tool called Web Groups.


Subject(s)
Databases, Factual , Enzymes/metabolism , Genomics , Metabolic Networks and Pathways , Energy Metabolism , Genome , Internet , Metabolomics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...