Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1713: 464529, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38029660

ABSTRACT

A detailed analysis of intra-particle volumes and layer thicknesses and their effect on the diffusion of solutes in hydrophilic interaction liquid chromatography (HILIC) was made. Pycnometric measurements and the retention volume of deuterated mobile phase constituents (water and acetonitrile) were used to estimate the void volume inside the column, including not only the volume of the mobile phase but also part of the enriched water solvent acting as the stationary phase in HILIC. The mobile phase (hold-up) volume accessible to non-retained components was estimated using a homologous series approach. The joint analysis of the different approaches indicated the formation of enriched water layers on the hydrophobic silica mesopore walls with a thickness varying significantly with mobile phase composition. The maximal thickness of the enriched water layers, which corresponded to the minimum void volume accessible to unretained solutes, marked a transition in the retention behavior of the studied analytes. Discrepancies between deuterated solvent measurements and pycnometry were explained by the existence of an irreplaceable water layer adsorbed on the silica surface. Regarding the diffusion behavior in HILIC, peak parking experiments were used to interpret the influence of the acetonitrile content on the effective diffusion coefficient Deff. A systematic decrease in Deff and molecular diffusion Dm was observed with decreasing acetonitrile concentration, primarily attributed to variations in mobile phase viscosity. Notably, Deff/Dm remained nearly unaffected by variations in mobile phase composition. Finally, the effective medium theory was used to make a comprehensive analysis of Dpart/Dm to study the contribution to band broadening when the solute resides in the mesopores. The obtained data unveiled a curvature with a minimum corresponding to conditions of maximum water-layer thickness and retention. For the weakly retained compounds (k' < 0.5) the Dpart/Dm-values were found to be relatively high (order of 0.35-0.5), which directly reflects the high γsDs/Dm-values that were observed (order 0.35-7).


Subject(s)
Silicon Dioxide , Water , Silicon Dioxide/chemistry , Chromatography, Liquid/methods , Solvents , Hydrophobic and Hydrophilic Interactions , Acetonitriles
2.
Anal Chim Acta ; 1277: 341672, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37604624

ABSTRACT

The Abraham's solvation parameter model, based on linear solvation energy relationships (LSER), allows the accurate characterization of the selectivity of chromatographic systems according to solute-solvent interactions (polarizability, dipolarity, hydrogen bonding, and cavity formation). However, this method, based on multilinear regression analysis, requires the measurement of the retention factors of a considerably high number of compounds, turning it into a time-consuming low throughput method. Simpler methods such as Tanaka's scheme are preferred. In the present work, the Abraham's model is revisited to develop a fast and reliable method, similar to the one proposed by Tanaka, for the characterization of columns employed in reversed-phase liquid chromatography and particularly in hydrophilic interaction liquid chromatography. For this purpose, pairs of compounds are carefully selected in order to have in common all molecular descriptors except for a specific one (for instance, similar molecular volume, dipolarity, polarizability, and hydrogen bonding basicity features, but different hydrogen bonding acidity). Thus, the selectivity factor of a single pair of test compounds can provide information regarding the extent of the dissimilar solute-solvent interactions and their influence on chromatographic retention. The proposed characterization method includes the determination of the column hold-up volume and Abraham's cavity term by means of the injection of four alkyl ketone homologues. Therefore, five chromatographic runs in a reversed-phase column (four pairs of test solutes and a mixture of four homologues) are enough to characterize the selectivity of a chromatographic system. Tanaka's method is also analyzed from the LSER point of view.

3.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771038

ABSTRACT

Common methods for hold-up time and volume determination in Reversed-Phase Liquid Chromatography (RPLC) have been tested for Hydrophilic Interaction Liquid Chromatography (HILIC). A zwitterionic ZIC-HILIC column has been used for the testing. The pycnometric determination method, based on differences in column weight when filled with water or organic solvent, provides the overall volume of solvent inside the column. This includes the volume of eluent semi-sorbed on the packing of the column, which acts as the main stationary phase. The homologous series approach, based on the retention behavior of homologues in relation to their molecular volume, allows the determination of accurate hold-up volumes. However, the application of this method is time-consuming. In some cases, large neutral markers with poor dipolarity/polarizability and hydrogen bonding interactions can be used as hold-up volume markers. This is the case of dodecylbenzene and nonadecane-2-one in clearly HILIC behaving chromatographic systems, the use of decanophenone as a marker can be even extended to the boundary between HILIC and RPLC. The elution volume of the marker remains nearly unaffected by the concentration of ammonium acetate in the mobile phase up to 20 mM. The injection of pure solvents to produce minor base-line disturbance as hold-up markers is strongly discouraged, since solvent peaks are complex to interpret and depend on the ionic strength of the eluent.

4.
Talanta ; 238(Pt 2): 123036, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34801894

ABSTRACT

The exceptional properties of 2D layered black phosphorus (BP) make it a promising candidate for electrochemical sensing applications and, even though BP is considered unstable and tends to degrade by the presence of oxygen and moisture, its oxidation can be beneficial in some situations. In this work, we present an unequivocal demonstration that the exposition of BP-based working electrodes to normal ambient conditions can indeed be advantageous, leading to an enhancement of voltammetric sensing applications. This point was proved using a BP modified screen-printed carbon electrode (BP-SPCE) for the voltammetric determination of dopamine (DA) as a model target analyte. Oxidized BP-SPCE (up to 35% of PxOy at the surface) presented an enhanced analytical performance with a 5-fold and 2-fold increase in sensitivity, as compared to bare-SPCE and non-oxidized BP-SPCE stored in anhydrous atmosphere, respectively. Good detection limit, repeatability, reproducibility, stability, selectivity, and accuracy were also achieved. Overall, the results presented herein display the prominent possibilities of preparing and working with BP based-sensors in normal ambient settings and showcase their implementation under physiological conditions.


Subject(s)
Electrochemical Techniques , Phosphorus , Carbon , Electrodes , Reproducibility of Results
5.
J Chromatogr A ; 1656: 462543, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34571282

ABSTRACT

Pycnometric and homologous series retention methods are used to determine the volume and mean composition of the water-rich layers partially adsorbed on the surface of several hydrophilic interaction liquid chromatography (HILIC) column fillings with acetonitrile-water and methanol-water as eluents. The findings obtained in this work confirm earlier studies using direct methods for measuring the stationary phase water content performed by Jandera's and Irgum's research groups. Water is preferentially adsorbed on the surface of the HILIC bonded phase in hydroorganic eluents containing more than 40% acetonitrile or 70% methanol, and a gradient of several water-rich transition layers between the polar bonded phase and the poorly polar bulk mobile phase is formed. These layers of reduced mobility act as HILIC stationary phases, retaining polar solutes. The volume of these layers and concentration of adsorbed water is much larger for acetonitrile-water than for methanol-water mobile phases. In hydroorganic eluents with less than 20-30% acetonitrile or 40% methanol the amount of preferentially adsorbed water is very small, and the observed retention behavior is close to the one in reversed-phase liquid chromatography (RPLC). In eluents with intermediate acetonitrile-water or methanol-water compositions a mixed HILIC-RPLC behavior is presented. Comparison of several HILIC columns shows that the highest water enrichment in the HILIC retention region for acetonitrile-water mobile phases is observed for zwitterionic and aminopropyl bonded phases, followed in minor grade for diol and polyvinyl alcohol functionalizations. Pentafluorophenyl bonded phase, usually considered a HILIC column, does not show significant water adsorption, nor HILIC retention.


Subject(s)
Chromatography, Reverse-Phase , Water , Adsorption , Chromatography, Liquid , Hydrophobic and Hydrophilic Interactions
6.
Mol Pharm ; 18(6): 2311-2321, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33983741

ABSTRACT

It is widely accepted that solubility-pH profiles of ionizable compounds follow the Henderson-Hasselbalch equation. However, several studies point out that compounds often undergo additional processes in saturated solutions, such as sub-micellar oligomerization, micellar aggregation, or drug-buffer complexation among others, which make the experimental profiles deviate from the behavior predicted by the Henderson-Hasselbalch equation. Often, the presence of additional processes is supported by the analysis of experimental data through solubility computer programs. However, the purpose of this work is to experimentally prove the aggregation phenomena for a series of bases for which deviations from the theoretical profile have been observed. To this end, five monoprotic bases (lidocaine, maprotiline, cyproheptadine, bupivacaine, and mifepristone) susceptible to form ionic aggregates in solution have been selected, and mass spectrometry has been the technique of choice to prove the presence of aggregation. High declustering potentials have been applied to prevent aggregates from forming in the ionization source of the mass spectrometer. In addition, haloperidol has been used as a negative control since according to its profile, it is not suspected to form ionic aggregates. In all instances, except for haloperidol, the analysis of the saturated solutions revealed the presence of mixed-charged dimers (aggregates formed by a neutral molecule and a charged one) and even trimers in the case of mifepristone and bupivacaine. For lidocaine, the most soluble of the compounds, the presence of neutral aggregates was also detected. These experiments support the hypothesis that the simple Henderson-Hasselbalch equation may explain the solubility-pH behavior of certain compounds, but it can be somewhat inaccurate in describing the behavior of many other substances.


Subject(s)
Ions/chemistry , Solutions/chemistry , Chemistry, Pharmaceutical , Hydrogen-Ion Concentration , Solubility , Tandem Mass Spectrometry
7.
Anal Chim Acta ; 1130: 39-48, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32892937

ABSTRACT

A methodology for the estimation of the different phase volumes in HILIC is presented. For a ZIC-HILIC column the mobile phase volume (hold-up volume) is determined in several acetonitrile- and methanol-water compositions by a Linear Free Energy Relationships (LFER) homologous series approach involving n-alkyl-benzenes, -phenones, and -ketones. We demonstrate that the column works as a HILIC column when the mobile phase contains high and medium proportions of methanol or acetonitrile. However, for acetonitrile contents below 20%, or 40% for methanol, same column works in RPLC. In between, a mixed HILIC-RPLC behavior is observed, and solutes of low molecular volume are retained as in HILIC mode, but the largest ones show RPLC retention. From the homologous series retention data and pycnometric measurements involving the pure organic solvents and their mixtures with water, the mean solvent composition of the water-rich transition layers between column functionalization and the bulk mobile phase, which act as stationary phase, is estimated. Finally, the phase ratio between stationary and mobile phases is also estimated for each eluent composition, allowing the calculation of the corresponding stationary phase volumes. All volumes are strongly dependent on the water content in the eluent, especially when acetonitrile is selected as mobile phase constituent. In HILIC mode, when the water content in the hydroorganic mobile phase increases, the volumes of mobile phase decrease, but the volumes of stationary phase (mainly the water layer adsorbed onto the bonded-phase and the water-enriched interface) increase. However, at high water concentrations, where the column works in RPLC mode, the mobile phase volume increases and the stationary phase (which is now the bonded zwitterion) volume decreases when increasing the water percentage in the mobile phase.

8.
Eur J Pharm Sci ; 148: 105305, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32184154

ABSTRACT

The solubility of three drugs (glimepiride, pioglitazone, sibutramine) with different acid/base properties and expected supersaturation behavior was examined in detail using the shake-flask (SF) and potentiometric (CheqSol) methods. Both uncharged (free) species and hydrochloride salts were used as starting materials. On the one hand, the SF method provided information about the thermodynamic solubility at any pH value, including the counterion-dependent solubility of ionic species. Additionally, this method easily allowed the identification of the solid phase in equilibrated solutions by powder X-ray diffraction, and the detection and quantification of aggregation and complexation reactions. On the other hand, CheqSol method permitted the measurement of the equilibrium solubility of neutral species, the observation of changes in solid forms, and the extent and duration of supersaturation (kinetic solubility) for "chaser" compounds. The combined information from both methods gave an accurate picture of the solubility behavior of the studied drugs.


Subject(s)
Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical/methods , Cyclobutanes/chemistry , Hydrogen-Ion Concentration/drug effects , Pioglitazone/chemistry , Potentiometry/methods , Solubility , Sulfonylurea Compounds/chemistry
9.
Anal Chim Acta ; 1092: 132-143, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31708026

ABSTRACT

The Abraham solvation parameter model, a linear free energy relationship (LFER) approach, has been used to characterize a polymeric zwitterionic (sulfobetaine) column in HILIC mode. When acetonitrile (MeCN) is used in the preparation of mobile phases the main solute characteristics affecting the chromatographic behavior of analytes are the molecular size and the hydrogen-bonding (both acidity and basicity) interactions. The former property is more favorable in the acetonitrile-rich mobile phase, reducing thus the retention, but the latter reveals a higher affinity for the water layer adsorbed on the stationary phase, enhancing retention. However, if the aprotic acetonitrile is replaced by methanol, a hydrogen-bond acidic solvent, solute hydrogen-bond basicity does not contribute any more to retention, quite the opposite. Thus, a slightly different selectivity is observed in methanol/water than in acetonitrile/water. Normal-phase mode and HILIC-MeCN share the same main factors affecting retention. For reversed-phase and immobilized artificial membrane (IAM) chromatography, the solute molecular size increase retention because of the lower amount of energy required in the formation of a cavity in the solvated stationary phase. On the contrary, the analyte hydrogen-bond basicity favors interactions with the hydroorganic mobile phase and reduces retention. The determined parameters justify the reversed selectivity commonly observed in HILIC in reference to reversed-phase. In most instances, the least retained solutes in reversed-phase are the most retained in HILIC.

10.
Talanta ; 201: 104-110, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31122399

ABSTRACT

A simple HPLC-EC method based on hydrophilic interaction liquid chromatography with amperometric detection through gold screen-printed electrodes has been developed and applied for the first time to the determination of aminothiols in white wines. Moreover, the coupling of the method with partial least squares discriminant analysis (PLS-DA) using the analysed aminothiols as biomarkers provides wine discrimination in terms of harvest year. White wine samples were directly injected and chromatographic areas, together with pH and redox potential values, allowed a successful discrimination of wines from different harvest years with a global classification rate of 97.8%. The developed HPLC-EC method also generated characteristic fingerprints that were combined with PLS-DA to classify wines according to three wine varieties, with a global classification rate of 95.3%.

11.
Anal Chim Acta ; 1050: 176-184, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30661587

ABSTRACT

The high proportion of acetonitrile used in many HILIC mobile phases significantly changes the acid-base properties of pH buffers and analytes foreseen from available data in water. In this paper, the recommended stability pH range for chromatographic columns is examined with various acetonitrile/water mixtures, resulting in a significant broadening in the operational pH window with the content of organic solvent. Additionally, the challenge of buffer selection in HILIC is also addressed. Commonly used ammonium acetate shrinks its pH buffering range in acetonitrile-rich mobile phases due to variations in the dissociation constants of the buffer constituents (acetic acid and ammonium). Thus, other organic acids such as formic acid, TFA, and succinimide have been studied as buffers in order to fully cover the pH range of use of the column. Also the retention-pH profiles of several acids and bases have been studied in 80% and 90% acetonitrile using the proposed buffers and their behavior compared to that obtained with buffers prepared from oxalic acid, pyrrolidine, and triethylamine. The latter two show additional interactions in 80% acetonitrile that distort the expected retention-pH profiles of acid analytes, but not the ones of bases. In 90% acetonitrile the profiles are affected by significant additional solute-buffer interactions that might be caused by ion pairing, homo- and heteroassociation in this low ion solvating medium.

12.
J Chromatogr A ; 1571: 176-184, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30150116

ABSTRACT

A homologous series approach derived from the Abraham's solvation model was developed for the determination of hold-up times. Firstly, it was tested from reversed-phase liquid chromatography data obtained in the literature involving several series of homologues, followed by its application in a polymeric zwitterionic HILIC column using two different homologous series (n-alkyl benzenes and n-alkyl phenones). Acetonitrile and methanol were selected as organic modifiers in a composition range between 80% and 100% in volume. Results obtained for both series were consistent, and hold-up times were found to be strongly dependent on the water content and the organic modifier nature of the mobile phase.


Subject(s)
Benzene Derivatives/analysis , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Ketones/analysis , Benzene Derivatives/chemistry , Hydrophobic and Hydrophilic Interactions , Ketones/chemistry , Nitrosamines/analysis , Nitrosamines/chemistry , Thermodynamics
13.
Eur J Pharm Sci ; 122: 331-340, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30006180

ABSTRACT

In the present study three different procedures have been compared for the determination of the lipophilicity of the unionized species (log Po/w) of neutral, acidic, basic, amphoteric, and zwitterionic drugs. Shake-flask, potentiometric and chromatographic approaches have been assayed in a set of 66 representative compounds in different phases of advanced development. An excellent equivalence has been found between log Po/w values obtained by shake-flask and potentiometry, while the chromatographic approach is less accurate but very convenient for screening purposes when a high-throughput is required. In the case of zwitterionic and amphoteric compounds, either for shake-flask and chromatographic methods, the pH has to be accurately selected in order to ensure the compound to be in its neutral form.


Subject(s)
1-Octanol/chemistry , Pharmaceutical Preparations/chemistry , Water/chemistry , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Potentiometry
14.
J Pharm Biomed Anal ; 145: 98-109, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28654782

ABSTRACT

Drugs designed to reach a pharmacological CNS target must be effectively transported across the blood-brain barrier (BBB), a thin monolayer of endothelial cells tightly attached together between the blood and the brain parenchyma. Because of the lipidic nature of the BBB, several physicochemical partition models have been studied as surrogates for the passive permeation of potential drug candidates across the BBB (octanol-water, alkane-water, PAMPA...). In the last years, biopartition chromatography is gaining importance as a noncellular system for the estimation of biological properties in early stages of drug development. Microemulsions (ME) are suitable mobile phases, because of their ease of formulation, stability and adjustability to a large number of compositions mimicking biological structures. In the present work, several microemulsion liquid chromatographic (MELC) systems have been characterized by means of the Abraham's solvation parameter model, in order to assess their suitability as BBB distribution or permeability surrogates. In terms of similarity between BBB and MELC systems (dispersion forces arising from solute non-bonded electrons, dipolarity/polarizability, hydrogen-bond acidity and basicity, and molecular volume), the passive permeability surface area product (log PS) for neutral (including zwitterions), fully and partially ionized drugs was found to be well correlated with the ME made of 3.3% SDS (w/v; surfactant) 0.8% heptane (w/v; oil phase) and 6.6% 1-butanol (w/v; co-surfactant) in 50mM aqueous phosphate buffer, pH 7.4.


Subject(s)
Blood-Brain Barrier , 1-Butanol , Chromatography, Liquid , Humans , Hydrogen Bonding , Octanols
15.
Talanta ; 162: 293-299, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27837832

ABSTRACT

Common drugs intended for action in plasma (antibacterials, antiallergics, diuretics...) often display both acidic and basic behavior, and some of these amphoteric compounds can appear as zwitterions. In such cases, accurate profiling of lipophilicity vs. pH, which plays a fundamental role in drug pharmacokinetics, might be complex. In the present work two common lipophilicity determination methods based on the drug distribution between 1-octanol and aqueous buffer i.e. phase equilibration (shake-flask) and two-phase titration (potentiometry), were compared with a high-throughput lipophilicity index, the Chromatographic Hydrophobicity Index (CHI). The results were also compared with log Do/w pH-profiles calculated by different algorithms from ACD/Labs. Accurate and similar results were obtained for both octanol-water approaches but, due to the lower determination times and the absence of different ion-pairing buffers, potentiometry was shown to be the most convenient method. CHI vs. pH profiles provide rapid and efficient information, which is very convenient for lipophilicity screening purposes, but may differ slightly from shake-flask and potentiometric results.


Subject(s)
1-Octanol/chemistry , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Pharmaceutical Preparations/chemistry , Water/chemistry , Algorithms , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Buffers , Chromatography, High Pressure Liquid , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacokinetics , Hydrogen-Ion Concentration , Pharmaceutical Preparations/metabolism , Solubility
16.
Eur J Pharm Sci ; 93: 163-76, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27449396

ABSTRACT

The ionization constants (pKa) and the pH-dependent solubility (log S-pH) of six phenothiazine derivatives (promazine hydrochloride, chlorpromazine hydrochloride, triflupromazine hydrochloride, fluphenazine dihydrochloride, perphenazine free base, and trifluoperazine dihydrochloride) were determined at 25 and 37°C. The pKa values of these low-soluble surface active molecules were determined by the cosolvent method (n-propanol/water at 37°C and methanol/water at 25°C). The log S-pH profiles were measured at 24h incubation time in 0.15M phosphate buffers. The log S-pH "shape-template" method, which critically depends on accurate pKa values (determined independently of solubility data), was used to propose speciation models, which were subsequently refined by rigorous mass-action weighted regression procedure described recently. Differential scanning calorimetry (DSC), UV-visible spectrophotometry, potentiometric, and high performance liquid chromatography (HPLC) measurements were used to characterize the compounds. The intrinsic solubility (S0) values of the three least-soluble drugs (chlorpromazine·HCl, triflupromazine·HCl, and trifluoperazine·2HCl) at 25°C were 0.5, 1.1, and 2.7µg/mL (resp.). These values increased to 5.5, 9.2, and 8.7µg/mL (resp.) at the physiological temperature. The enthalpies of solution for the latter compounds were exceptionally high positive (endothermic) values (99-152kJ·mol(-1)). Cationic sub-micellar aggregates were evident (from the distortions in the log S-pH profiles) for chlorpromazine, fluphenazine, perphenazine, and trifluoperazine at 25°C. The effects persisted at 37°C for chlorpromazine and trifluoperazine. The solids in suspension were apparently amorphous in cases where the drugs were introduced as the chloride salts.


Subject(s)
Hydrogen-Ion Concentration , Micelles , Phenothiazines/administration & dosage , Temperature , Calorimetry, Differential Scanning , Chromatography, High Pressure Liquid , Solubility , Spectrophotometry, Ultraviolet
17.
Electrophoresis ; 37(14): 2010-6, 2016 07.
Article in English | MEDLINE | ID: mdl-27126602

ABSTRACT

In the present work, several MEEKC systems are studied to assess their suitability for lipophilicity determination of acidic, neutral, and basic compounds. Thus, several microemulsion compositions over a wide range of pH values (from 2.0 to 12.0), containing heptane, 1-butanol and different types and amounts of surfactant (SDS or sodium cholate: from 1.3 to 3.3%) are characterized using Abraham's solvation model. The addition of acetonitrile (up to 10%) is also studied, since it increases the resolution of the technique for the most lipophilic compounds. The system coefficients obtained are very similar to those of the 1-octanol/water, used as the reference lipophilicity index, allowing simple and linear correlations between the 1-octanol/water partition values (log Po/w ) and MEEKC mass distribution ratios (log kMEEKC ). Variations in the microemulsion composition (aqueous buffer, surfactant, concentration of ACN) did not significantly affect the similarity of the MEEKC systems to log Po/w partition.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Emulsions , Hydrogen-Ion Concentration , Lipids/chemistry , Models, Chemical
18.
J Pharm Biomed Anal ; 127: 26-31, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-26732880

ABSTRACT

A fast and accurate lipophilicity determination is fundamental in the drug discovery process, as long as it is a relevant property in the absorption, distribution, metabolism, excretion and toxicity (ADMET) of a potential drug substance. In the present work, different models based on chromatographic retention values for a large set of compounds and some of their molecular descriptors (calculated by ACD/Labs or CODESSA programs) have been examined in order to establish reliable equations for logPo/w determination from fast chromatographic hydrophobicity index (CHI) measurements. This appears to be a very interesting high-throughput methodology for screening purposes, since CHI values can be measured by UHPLC in very short runs (<4min) and molecular descriptors can be easily computed from the structure of any compound. The selected final descriptors were Abraham's hydrogen-bond acidity (A) and excess molar refraction (E) from ACD/Labs, and hydrogen-bond acidity HDCA-1/TMSA and HOMO-LUMO polarizability descriptors from CODESSA software. The proposed equations allow an accurate determination of logPo/w with standard errors in the range of 0.4 units.


Subject(s)
Chromatography, Liquid , Drug Discovery , High-Throughput Screening Assays , Models, Chemical , Pharmaceutical Preparations/chemistry , Drug Discovery/instrumentation , Drug Discovery/methods , Hydrophobic and Hydrophilic Interactions
19.
Methods Mol Biol ; 1221: 101-28, 2015.
Article in English | MEDLINE | ID: mdl-25261310

ABSTRACT

We describe standard methods for propagation, purification, quality control, and physicochemical characterization of human rhinoviruses, using HRV-A2 as an example. Virus is propagated in HeLa-OHIO cells grown in suspension culture and purified via sucrose density gradient centrifugation. Purity and homogeneity of the preparations are assessed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE), capillary electrophoresis (CE), gas-phase electrophoretic mobility molecular analysis (GEMMA), and electron microscopy (EM). We also briefly describe usage of these methods for the characterization of subviral particles as well as for the analysis of their complexes with antibodies and soluble recombinant receptor mimics.


Subject(s)
Electrophoresis, Capillary/methods , Microscopy, Electron/methods , Rhinovirus , Biomedical Research/methods , Cell Culture Techniques , Centrifugation, Density Gradient , Electrophoresis, Polyacrylamide Gel , Electrophoretic Mobility Shift Assay/methods , HeLa Cells/virology , Humans , Microscopy, Electron, Transmission/methods , Rhinovirus/growth & development , Rhinovirus/isolation & purification
20.
PLoS Pathog ; 9(4): e1003270, 2013.
Article in English | MEDLINE | ID: mdl-23592991

ABSTRACT

Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV) serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3'-end. This suggests that packaging also occurs in an ordered manner resulting in the 3'-poly-(A) tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruses.


Subject(s)
RNA, Viral/genetics , RNA, Viral/metabolism , Rhinovirus/physiology , Virus Internalization , Virus Uncoating , Base Sequence , Capsid/chemistry , Capsid/metabolism , Cross-Linking Reagents/pharmacology , Ficusin/pharmacology , Genome, Viral , Humans , Nucleic Acid Conformation , Poly A/metabolism , Protein Conformation , Rhinovirus/genetics , Sequence Analysis, RNA , Ultraviolet Rays , Virus Assembly , Virus Uncoating/drug effects , Virus Uncoating/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...