Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2652, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531902

ABSTRACT

Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.


Subject(s)
SNARE Proteins , Vesicle-Associated Membrane Protein 2 , Animals , Mice , SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Membrane Fusion , Depression , Syntaxin 1/metabolism , Nerve Tissue Proteins/metabolism , R-SNARE Proteins/metabolism
2.
Elife ; 122023 09 11.
Article in English | MEDLINE | ID: mdl-37695731

ABSTRACT

Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.


Subject(s)
Brain-Derived Neurotrophic Factor , Dense Core Vesicles , Nerve Tissue Proteins , Neurons , R-SNARE Proteins , Animals , Mice , Biological Evolution , Golgi Apparatus , Nerve Tissue Proteins/genetics , R-SNARE Proteins/genetics , Exocytosis
3.
Neuron ; 107(3): 454-469.e6, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32574560

ABSTRACT

Neuroscience relies on techniques for imaging the structure and dynamics of neural circuits, but the cell bodies of individual neurons are often obscured by overlapping fluorescence from axons and dendrites in surrounding neuropil. Here, we describe two strategies for using the ribosome to restrict the expression of fluorescent proteins to the neuronal soma. We show first that a ribosome-tethered nanobody can be used to trap GFP in the cell body, thereby enabling direct visualization of previously undetectable GFP fluorescence. We then design a ribosome-tethered GCaMP for imaging calcium dynamics. We show that this reporter faithfully tracks somatic calcium dynamics in the mouse brain while eliminating cross-talk between neurons caused by contaminating neuropil. In worms, this reporter enables whole-brain imaging with faster kinetics and brighter fluorescence than commonly used nuclear GCaMPs. These two approaches provide a general way to enhance the specificity of imaging in neurobiology.


Subject(s)
Brain/diagnostic imaging , Calcium/metabolism , Cell Body/pathology , Neurons/pathology , Optical Imaging/methods , Ribosomes/metabolism , Animals , Brain/metabolism , Brain/pathology , Caenorhabditis elegans , Calcium-Binding Proteins , Cell Body/metabolism , Green Fluorescent Proteins , Mice , Neurons/metabolism , Neuropil , Ribosomal Protein L10/metabolism , Single-Domain Antibodies
4.
EMBO Rep ; 19(4)2018 04.
Article in English | MEDLINE | ID: mdl-29440124

ABSTRACT

SORCS1 and SORCS3 are two related sorting receptors expressed in neurons of the arcuate nucleus of the hypothalamus. Using mouse models with individual or dual receptor deficiencies, we document a previously unknown function of these receptors in central control of metabolism. Specifically, SORCS1 and SORCS3 act as intracellular trafficking receptors for tropomyosin-related kinase B to attenuate signaling by brain-derived neurotrophic factor, a potent regulator of energy homeostasis. Loss of the joint action of SORCS1 and SORCS3 in mutant mice results in excessive production of the orexigenic neuropeptide agouti-related peptide and in a state of chronic energy excess characterized by enhanced food intake, decreased locomotor activity, diminished usage of lipids as metabolic fuel, and increased adiposity, albeit at overall reduced body weight. Our findings highlight a novel concept in regulation of the melanocortin system and the role played by trafficking receptors SORCS1 and SORCS3 in this process.


Subject(s)
Energy Metabolism/genetics , Nerve Tissue Proteins/genetics , Receptors, Cell Surface/genetics , Adiposity/genetics , Age Factors , Animals , Body Composition/genetics , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression , Genes, Reporter , Glucose/metabolism , Homeostasis , Hypothalamus/metabolism , Mice , Mice, Knockout , Models, Biological , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, Cell Surface/metabolism
5.
Cell Mol Life Sci ; 74(8): 1475-1483, 2017 04.
Article in English | MEDLINE | ID: mdl-27832290

ABSTRACT

Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor that directs cargo proteins, such as kinases, phosphatases, and signaling receptors, to their correct location within the cell. The activity of SORLA assures proper function of cells and tissues, and receptor dysfunction is the underlying cause of common human malignancies, including Alzheimer's disease, atherosclerosis, and obesity. Here, we discuss the molecular mechanisms that govern sorting of SORLA and its cargo in multiple cell types, and why genetic defects in this receptor results in devastating diseases.


Subject(s)
LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Brain/metabolism , Brain/pathology , Genetic Predisposition to Disease , Humans , LDL-Receptor Related Proteins/analysis , Membrane Transport Proteins/analysis , Nerve Growth Factors/metabolism , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Protein Conformation , Protein Transport , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...