Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Environ Health ; 21(Suppl 1): 121, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635700

ABSTRACT

BACKGROUND: Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions. METHODS: We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements. RESULTS: Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of 'confidential business information' which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates. CONCLUSION: We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health.


Subject(s)
Environmental Exposure , Environmental Pollutants , Humans , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Public Health , Public Policy , Uncertainty , Risk Assessment
2.
Environ Health ; 21(Suppl 1): 132, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635734

ABSTRACT

The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.


Subject(s)
Environmental Pollutants , Humans , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Environmental Health , Environmental Pollutants/analysis , Public Health , Risk Assessment , Consensus Development Conferences as Topic
3.
Local Environ ; 27(6): 728-746, 2022.
Article in English | MEDLINE | ID: mdl-35757155

ABSTRACT

A community-integrated geographic information systems (CIGIS) study assimilating qualitative and quantitative information about human exposures and health was conducted in Colfax, Louisiana, which hosts a commercial open burn/open detonation thermal treatment (TT) facility that destroys waste from Superfund sites, explosives, military ordnances, and propellants. Fifty-eight percent of residents identified as Black, and median annual income was $16,318, with 90% of the population living below the poverty line. We conducted oral history interviews of twenty-nine residents and mined public records to document the community's experiences. Interviews focused on themes of Colfax's history, changing community fabric, resident health, and air pollution. The oral histories and public comments by community members provided information about lived experiences, including several health conditions, toleration of noise and vibration, property damage, and resulting changes to activity levels. These statements provided insight into the extent of suffering experienced by the local community. We also ran dispersion models for dates in 2020 when the waste stream composition, mass, and burn/smoldering times were provided in the facility's public records. The dispersion models placed the air pollution at the homes of residents during some of the time, and waste stream records from the TT facility agree with community testimony about health effects based on the known health effects of those compounds. CIGIS integration of our community-based qualitative data and maps with quantitative air pollution dispersion model output illustrated alignment between community complaints of impacts to health and property, known toxicological information about waste stream compounds, and dispersion model output.

4.
New Solut ; 28(4): 570-598, 2019 02.
Article in English | MEDLINE | ID: mdl-30439292

ABSTRACT

This paper is intended to complement our extended documentation and analysis of the activities of the Gulf Coast Health Alliance: Health Risks related to the Macondo Spill project Community Outreach and Dissemination Core entitled, "Building and maintaining a citizen science network with fishermen and fishing communities after the Deepwater Horizon oil disaster using a Community-Based Participatory Research (CBPR) approach." We discuss nuances of CBPR practice, including trust-building, clarification of stakeholder expectations, balancing timelines and agendas, cultural fluency, and the importance of regional history-political-economic context, regulatory practices, and cultural life-ways-in creating social dynamics that overarch and underpin the entire process. We examine the unique role of knowledge-making hybrid structures like the project's Fishermen's citizen science network and compare/contrast this structure with other models of participatory science or deliberation. Finally, we reiterate the importance of environmental health literacy efforts, summarize project outcomes, and offer thoughts on the future roles of collaborative efforts among communities and institutional science in environmental public health.


Subject(s)
Citizen Science , Disasters , Fisheries , Petroleum Pollution/adverse effects , Water Pollutants, Chemical/adverse effects , Animals , Community-Based Participatory Research , Environmental Health , Environmental Monitoring , Gulf of Mexico , Seafood
5.
Arch Toxicol ; 90(4): 829-37, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25998020

ABSTRACT

During/after the BP/Deepwater Horizon oil spill, cleanup workers, fisherpersons, SCUBA divers, and coastal residents were exposed to crude oil and dispersants. These people experienced acute physiological and behavioral symptoms and consulted a physician. They were diagnosed with petroleum hydrocarbon poisoning and had blood analyses analyzed for volatile organic compounds; samples were drawn 5-19 months after the spill had been capped. We examined the petroleum hydrocarbon concentrations in the blood. The aromatic compounds m,p-xylene, toluene, ethylbenzene, benzene, o-xylene, and styrene, and the alkanes hexane, 3-methylpentane, 2-methylpentane, and iso-octane were detected. Concentrations of the first four aromatics were not significantly different from US National Health and Nutritional Examination Survey/US National Institute of Standards and Technology 95th percentiles, indicating high concentrations of contaminants. The other two aromatics and the alkanes yielded equivocal results or significantly low concentrations. The data suggest that single-ring aromatic compounds are more persistent in the blood than alkanes and may be responsible for the observed symptoms. People should avoid exposure to crude oil through avoidance of the affected region, or utilizing hazardous materials suits if involved in cleanup, or wearing hazardous waste operations and emergency response suits if SCUBA diving. Concentrations of alkanes and PAHs in the blood of coastal residents and workers should be monitored through time well after the spill has been controlled.


Subject(s)
Hydrocarbons/blood , Occupational Diseases/blood , Occupational Exposure/analysis , Petroleum Pollution/adverse effects , Adolescent , Adult , Aged , Child , Child, Preschool , Environmental Exposure/analysis , Female , Gulf of Mexico , Humans , Male , Middle Aged , Occupational Diseases/etiology , Water Pollutants, Chemical/blood , Young Adult
6.
Environ Sci Pollut Res Int ; 22(16): 12073-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25874429

ABSTRACT

Evidence of fresh oil from the BP/Deepwater Horizon Mississippi Canyon-252 (MC-252) well was found in the northern Gulf of Mexico up to 1 year and 10 months after it was capped on 15 July 2010. Offshore and coastal samples collected after capping displayed ratios of biomarkers matching those of MC-252 crude oil. Pre- and post-capping samples were compared. Little weathering had occurred, based on the abundance of low-molecular-weight (LMW) n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in the post-capping samples. The occurrence of fresh oil in offshore waters and coastal areas suggest that the MC-252 well continued to leak hydrocarbons into the Gulf of Mexico at least until 22 May 2012, the end of this study period.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Oil and Gas Industry , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Gulf of Mexico , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Weather
7.
Mar Pollut Bull ; 73(1): 129-43, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23831318

ABSTRACT

We examined the geographic extent of petroleum hydrocarbon contamination in sediment, seawater, biota, and seafood during/after the BP/Deepwater Horizon Oil Spill (April 20-July 15, 2010; 28.736667°N, -88.386944°W). TPH, PAHs, and 12 compound classes were examined, particularly C1-benzo(a)anthracenes/chrysenes, C-2-/C-4-phenanthrenes/anthracenes, and C3-naphthalenes. Sediment TPH, PAHs, and all classes peaked near Pensacola, Florida, and Galveston, Texas. Seawater TPH peaked off Pensacola; all of the above classes peaked off the Mississippi River, Louisiana and Galveston. Biota TPH and PAHs peaked near the Mississippi River; C-3 napthalenes peaked near the spill site. Seafood TPH peaked near the spill site, with PAHs and all classes peaking near Pensacola. We recommend that oil concentrations continued to be monitored in these media well after the spill has ceased to assist in defining re-opening dates for fisheries; closures should be maintained until hydrocarbon levels are deemed within appropriate limits.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Fisheries/statistics & numerical data , Florida , Gulf of Mexico , Louisiana , Mississippi , Seafood/statistics & numerical data , Seawater/chemistry , Texas , Water Pollution, Chemical/statistics & numerical data
8.
New Solut ; 23(1): 55-83, 2013.
Article in English | MEDLINE | ID: mdl-23552648

ABSTRACT

Across the United States, the race for new energy sources is picking up speed and reaching more places, with natural gas in the lead. While the toxic and polluting qualities of substances used and produced in shale gas development and the general health effects of exposure are well established, scientific evidence of causal links has been limited, creating an urgent need to understand health impacts. Self-reported survey research documenting the symptoms experienced by people living in proximity to gas facilities, coupled with environmental testing, can elucidate plausible links that warrant both response and further investigation. This method, recently applied to the gas development areas of Pennsylvania, indicates the need for a range of policy and research efforts to safeguard public health.


Subject(s)
Environmental Health , Extraction and Processing Industry/methods , Natural Gas , Public Health , Anthropology, Cultural , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Pennsylvania , Quality of Life , Self Report , Stress, Psychological/etiology , Surveys and Questionnaires , Violence
9.
Int J Clin Exp Med ; 1(2): 130-44, 2008.
Article in English | MEDLINE | ID: mdl-19079667

ABSTRACT

On August 29, 2005, Hurricane Katrina made landfall along the Gulf Coast as a Category 3 hurricane. The associated storm surge and heavy rainfall resulted in major flooding throughout the New Orleans area. As the flood waters receded, thick sediment was left covering the ground and coating the interior of homes. This sediment was dispersed into the air and inhaled as dust by returning residents and workers. Our objective in this study was to evaluate the potential pulmonary effects associated with the respirable particulate matter (PM) derived from Hurricane Katrina (HK-PM) in mice. Samples of PM were collected from several locations along the Gulf Coast on September 30 and October 2, 2005 and had a mean aerodynamic diameter ranging from 3-5 mum). Chemical analysis and cytotoxicity assays were performed for all HK-PM samples. A few samples with varying levels of cytotoxicity were chosen for an acute inhalation exposure study. Airborne PM10 levels recorded in the New Orleans area post-Katrina were variable, ranging from 70 mug/m3 in Gentilly to 688 mug/m3 in Lakeview (residential areas). Mice exposed to one of these samples developed significant pulmonary inflammation and airways resistance and hyperresponsiveness to methacholine challenge. These studies demonstrate that dispersion of certain Katrina sediment samples through either natural (e.g., wind) or mechanical (e.g., vehicles) processes promotes airflow obstruction in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...