Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38375687

ABSTRACT

Current research suggests yeast fermentation has the potential to improve palatability of pea-based diets for both cats and dogs. However, to be useful, fermentation should not compromise other healthy attributes of peas such as a low glycemic response. Fermentation of uncooked pea starch with Candida utilis (ATCC 9950) appeared to increase crude protein, crude fiber content, inorganic compounds (phosphorus and iron) and phenols. Whole diets were designed with fermented and unfermented pea starch to assess palatability, food intake, and glycemic responses in unacclimated, mixed sex Beagle dogs and mixed breed cats (n = 8 and n = 7, respectively). For palatability testing, a control diet was formulated with 30% corn starch as well as test diets with 30% inclusion of fermented or unfermented pea starch (all lab-made), then compared to a commercial diet containing pea starch (Legacy/Horizon). Fermentation had little effect on rapidly digestible starch either in uncooked starch form or when incorporated into whole diets, but did decrease resistant starch by 15% and increase slowly digestible starch by 20%. Palatability tests using either two choices or four choices at a time revealed a significant preference for the fermented pea starch diet (p < 0.01) in both species. For the glycemic responses, a total of four different pea products were included: unfermented pea starch, fermented pea starch, and 30% inclusion of unfermented and fermented pea starch in whole formulated diets. There were no significant changes in glycemic responses with the fermented pea diet compared to the unfermented diet, demonstrating that healthful low glycemic properties of pea starch were retained after C. utilis fermentation. Overall, C. utilis-fermentation technique was successfully adapted to pea starch where it resulted in increased palatability and food intake in dogs and cats, with potential to positively contribute to overall health benefits for both species.

2.
Article in English | MEDLINE | ID: mdl-37536429

ABSTRACT

The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.


Subject(s)
Intestinal Absorption , Sodium-Glucose Transport Proteins , Animals , Swine , Sodium-Glucose Transport Proteins/metabolism , Jejunum/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Sodium/metabolism
3.
Article in English | MEDLINE | ID: mdl-33933629

ABSTRACT

Species differences between domestic cats (Felis catus) and dogs (Canis familiaris) has led to differences in their ability to digest, absorb and metabolize carbohydrates through poorly characterized mechanisms. The current study aimed to first examine biopsied small intestine, pancreas, liver and skeletal muscle from laboratory beagles and domestic cats for mRNA expression of key enzymes involved in starch digestion (amylase), glucose transport (sodium-dependent SGLTs and -independent glucose transporters, GLUT) and glucose metabolism (hexokinase and glucokinase). Cats had lower mRNA expression of most genes examined in almost all tissues compared to dogs (p < 0.05). Next, postprandial glucose, insulin, methylglyoxal (a toxic glucose metabolite) and d-lactate (metabolite of methylglyoxal) after single feedings of different starch sources were tested in fasted dogs and cats. After feeding pure glucose, peak postprandial blood glucose and methylglyoxal were surprisingly similar between dogs and cats, except cats had a longer time to peak and a greater area under the curve consistent with lower glycolytic enzyme expression. After feeding starches or whole diets to dogs, postprandial glycemic response, glycemic index, insulin, methylglyoxal and d-lactate followed reported glycemic index trends in humans. In contrast, cats showed very low to negligible postprandial glycemic responses and low insulin after feeding different starch sources, but not whole diets, with no relationship to methylglyoxal or d-lactate. Thus, the concept of glycemic index appears valid in dogs, but not cats. Differences in amylase, glucose transporters, and glycolytic enzymes are consistent with species differences in starch and glucose handling between cats and dogs.


Subject(s)
Blood Glucose/metabolism , Diet/veterinary , Dietary Carbohydrates/metabolism , Glycemic Index , Postprandial Period/physiology , Pyruvaldehyde/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Area Under Curve , Carbohydrate Metabolism , Cats , Digestion/physiology , Dogs , Female , Glucose/metabolism , Insulin/blood , Male , Starch/metabolism
4.
Article in English | MEDLINE | ID: mdl-32712085

ABSTRACT

The aim of this study was to identify the unknown transport mechanism of the extensively used monocarboxylate methionine feed supplement DL-methionine hydroxy analogue (DL-MHA) in rainbow trout intestine. Transport across the pyloric caeca (PC), midgut (MG), and hindgut (HG) regions were kinetically studied in Na+- and H+-dependent manners. Gene expression of monocarboxylate (MCTs) and sodium monocarboxylate transporters (SMCTs) were assessed. Results demonstrated that DL-MHA transport from 0.2-20 mM was Na+-dependent and obeyed Michaelis-Menten kinetics with low affinity in PC & MG in apical/basal pH of 7.7/7.7. Changes in apical/basal pH (6.0/6.0, 6.0/7.7, and 7.7/8.7) had insignificant effects on kinetics. In contrast, HG flux kinetics were only obtained in pH 7.7/8.7 or in the presence of lactate with medium affinity. Additionally, DL-MHA transport from 0-150 µM demonstrated the presence of a Na+-dependent high-affinity transporter in PC & MG. Conclusively, two distinct carrier-mediated DL-MHA transport mechanisms along the trout gut were found: 1) in PC & MG: apical transport was regulated by Na+-requiring systems that possibly contained low- and high-affinity transporters, and basolateral transport was primarily achieved through a H+-independent transporter; 2) in HG: uptake was apically mediated by a Na+-dependent transporter with medium affinity, and basolateral exit was largely controlled by an H+-dependent transporter. Finally, two major methionine feed supplements, DL-MHA and DL-methionine (DL-Met) were compared to understand the differences in their bioefficacy. Flux rates of DL-MHA were only about 42.2-66.0% in PC and MG compared to DL-Met, suggesting intestinal transport of DL-MHA was lower than DL-Met.


Subject(s)
Gene Expression Profiling , Intestinal Mucosa/metabolism , Intestines/drug effects , Intestines/physiology , Methionine/analogs & derivatives , Methionine/pharmacology , Oncorhynchus mykiss/physiology , Animal Feed/analysis , Animals , Biological Transport , Dietary Supplements , Hydrogen-Ion Concentration , Kinetics , Methionine/chemistry , Monocarboxylic Acid Transporters , Protons , Sodium/chemistry , Sodium/metabolism
5.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R245-R255, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31746628

ABSTRACT

The mucosal-to-serosal flux of 14C 3-O-methyl-d-glucose was compared against the electrogenic transport of d-glucose across ex vivo intestinal segments of Nile tilapia, rainbow trout, and pig in Ussing chambers. The difference in affinities (Km "fingerprints") between pig flux and electrogenic transport of glucose, and the absence of this difference in tilapia and trout, suggest two absorptive pathways in the pig and one in the fish species examined. More specifically, the total mucosal-to-serosal flux revealed a super high-affinity, high-capacity (sHa/Hc) total glucose transport system in tilapia; a super high-affinity, low-capacity (sHa/Lc) total glucose transport system in trout and a low-affinity, low-capacity (La/Lc) total glucose transport system in pig. Comparatively, electrogenic glucose absorption revealed similar Km in both fish species, with a super high-affinity, high capacity (sHa/Hc) system in tilapia; a super high-affinity/super low-capacity (sHa/sLc) system in trout; but a different Km fingerprint in the pig, with a high-affinity, low-capacity (Ha/Lc) system. This was supported by different responses to inhibitors of sodium-dependent glucose transporters (SGLTs) and glucose transporter type 2 (GLUT2) administered on the apical side between species. More specifically, tilapia flux was inhibited by SGLT inhibitors, but not the GLUT2 inhibitor, whereas trout lacked response to inhibitors. In contrast, the pig responded to inhibition by both SGLT and GLUT2 inhibitors with a higher expression of GLUT2. Altogether, it would appear that two pathways are working together in the pig, allowing it to have continued absorption at high glucose concentrations, whereas this is not present in both tilapia and trout.


Subject(s)
3-O-Methylglucose/metabolism , Fish Proteins/metabolism , Glucose Transporter Type 2/metabolism , Intestinal Absorption , Intestinal Mucosa/metabolism , Jejunum/metabolism , Sodium-Glucose Transport Proteins/metabolism , Animals , Cichlids , Female , Glucose Transporter Type 2/genetics , Membrane Potentials , Oncorhynchus mykiss , Sodium-Glucose Transport Proteins/genetics , Species Specificity , Sus scrofa
6.
Physiol Rep ; 7(9): e14090, 2019 05.
Article in English | MEDLINE | ID: mdl-31062524

ABSTRACT

Kinetic characterization of electrogenic sodium-dependent transport in Ussing chambers of d-glucose and d-galactose demonstrated sigmoidal/Hill kinetics in the porcine jejunum and ileum, with the absence of transport in the distal colon. In the jejunum, a high-affinity, super-low-capacity (Ha/sLc) kinetic system accounted for glucose transport, and a low-affinity, low-capacity (La/Lc) kinetic system accounted for galactose transport. In contrast, the ileum demonstrated a high-affinity, super-high-capacity (Ha/sHc) glucose transport and a low-affinity, high-capacity (La/Hc) galactose transport systems. Jejunal glucose transport was not inhibited by dapagliflozin, but galactose transport was inhibited. Comparatively, ileal glucose and galactose transport were both sensitive to dapagliflozin. Genomic and gene expression analyses identified 10 of the 12 known SLC5A family members in the porcine jejunum, ileum, and distal colon. Dominant SGLT1 (SLC5A1) and SGLT3 (SLC5A4) expression was associated with the sigmoidal Ha/sLc glucose and La/Lc galactose transport systems in the jejunum. Comparatively, the dominant expression of SGLT1 (SLC5A1) in the ileum was only associated with Ha glucose and La galactose kinetic systems. However, the sigmoidal kinetics and overall high capacity (Hc) of transport is unlikely accounted for by SGLT1 (SLC5A1) alone. Finally, the absence of transport and lack of pharmacological inhibition in the colon was associated with the poor expression of SLC5A genes. Altogether, the results demonstrated intestinal segregation of monosaccharide transport fit different sigmoidal kinetic systems. This reveals multiple transporter populations in each system, supported by gene expression profiles and pharmacological inhibition. Overall, this work demonstrates a complexity to transporter involvement in intestinal electrogenic monosaccharide absorption systems not previously defined.


Subject(s)
Intestinal Mucosa/metabolism , Membrane Transport Proteins/physiology , Monosaccharides/metabolism , Sus scrofa/metabolism , Animals , Biological Transport/physiology , Colon/metabolism , Galactose/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation/physiology , Glucose/metabolism , Ileum/metabolism , Intestinal Absorption/physiology , Jejunum/metabolism , Sodium-Glucose Transport Proteins/biosynthesis , Sodium-Glucose Transport Proteins/genetics , Sodium-Glucose Transporter 1/physiology
7.
Am J Physiol Regul Integr Comp Physiol ; 316(3): R222-R234, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30601703

ABSTRACT

Electrogenic sodium-dependent glucose transport along the length of the intestine was compared between the omnivorous Nile tilapia ( Oreochromis niloticus) and the carnivorous rainbow trout ( Oncorhynchus mykiss) in Ussing chambers. In tilapia, a high-affinity, high-capacity kinetic system accounted for the transport throughout the proximal intestine, midintestine, and hindgut segments. Similar dapagliflozin and phloridzin dihydrate inhibition across all segments support this homogenous high-affinity, high-capacity system throughout the tilapia intestine. Genomic and gene expression analysis supported findings by identifying 10 of the known 12 SLC5A family members, with homogeneous expression throughout the segments with dominant expression of sodium-glucose cotransporter 1 (SGLT1; SLC5A1) and sodium-myoinositol cotransporter 2 (SMIT2; SLC5A11). In contrast, trout's electrogenic sodium-dependent glucose absorption was 20-35 times lower and segregated into three significantly different kinetic systems found in different anatomical segments: a high-affinity, low-capacity system in the pyloric ceca; a super-high-affinity, low-capacity system in the midgut; and a low-affinity, low-capacity system in the hindgut. Genomic and gene expression analysis found 5 of the known 12 SLC5A family members with dominant expression of SGLT1 ( SLC5A1), sodium-glucose cotransporter 2 (SGLT2; SLC5A2), and SMIT2 ( SLC5A11) in the pyloric ceca, and only SGLT1 ( SLC5A1) in the midgut, accounting for differences in kinetics between the two. The hindgut presented a low-affinity, low-capacity system partially attributed to a decrease in SGLT1 ( SLC5A1). Overall, the omnivorous tilapia had a higher electrogenic glucose absorption than the carnivorous trout, represented with different kinetic systems and a greater expression and number of SLC5A orthologs. Fish differ from mammals, having hindgut electrogenic glucose absorption and segment specific transport kinetics.


Subject(s)
Glucose/metabolism , Intestinal Absorption , Oncorhynchus mykiss/physiology , Sodium-Glucose Transporter 1/metabolism , Tilapia/physiology , Animals , Benzhydryl Compounds/pharmacology , Cecum/metabolism , Gene Expression , Glucosides/pharmacology , In Vitro Techniques , Intestinal Absorption/genetics , Kinetics , Phlorhizin/pharmacology , Sodium-Glucose Transport Proteins/metabolism , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...