Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 109(6): 1893-1908, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38124661

ABSTRACT

REIIBP is a lysine methyltransferase aberrantly expressed through alternative promoter usage of NSD2 locus in t(4;14)-translocated multiple myeloma (MM). Clinically, t(4;14) translocation is an adverse prognostic factor found in approximately 15% of MM patients. The contribution of REIIBP relative to other NSD2 isoforms as a dependency gene in t(4;14)-translocated MM remains to be evaluated. Here, we demonstrated that despite homology with NSD2, REIIBP displayed distinct substrate specificity by preferentially catalyzing H3K4me3 and H3K27me3, with little activity on H3K36me2. Furthermore, REIIBP was regulated through microRNA by EZH2 in a Dicer-dependent manner, exemplifying a role of REIIBP in SET-mediated H3K27me3. Chromatin immunoprecipitation sequencing revealed chromatin remodeling characterized by changes in genome-wide and loci-specific occupancy of these opposing histone marks, allowing a bidirectional regulation of its target genes. Transcriptomics indicated that REIIBP induced a pro-inflammatory gene signature through upregulation of TLR7, which in turn led to B-cell receptor-independent activation of BTK and driving NFkB-mediated production of cytokines such as IL-6. Activation of this pathway is targetable using Ibrutinib and partially mitigated bortezomib resistance in a REIIBP xenograft model. Mechanistically, REIIBP upregulated TLR7 through eIF3E, and this relied on eIF3E RNA-binding function instead of its canonical protein synthesis activity, as demonstrated by direct binding to the 3'UTR of TLR7 mRNA. Altogether, we provided a rationale that co-existence of different NSD2 isoforms induced diversified oncogenic programs that should be considered in the strategies for t(4;14)-targeted therapy.


Subject(s)
Chromosomes, Human, Pair 14 , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Multiple Myeloma , Translocation, Genetic , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Animals , Mice , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 4/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Phenotype , Inflammation/genetics , Inflammation/metabolism , Histones/metabolism , Repressor Proteins
2.
Nat Cell Biol ; 24(6): 928-939, 2022 06.
Article in English | MEDLINE | ID: mdl-35618746

ABSTRACT

Most mammalian genes generate messenger RNAs with variable untranslated regions (UTRs) that are important post-transcriptional regulators. In cancer, shortening at 3' UTR ends via alternative polyadenylation can activate oncogenes. However, internal 3' UTR splicing remains poorly understood as splicing studies have traditionally focused on protein-coding alterations. Here we systematically map the pan-cancer landscape of 3' UTR splicing and present this in SpUR ( http://www.cbrc.kaust.edu.sa/spur/home/ ). 3' UTR splicing is widespread, upregulated in cancers, correlated with poor prognosis and more prevalent in oncogenes. We show that antisense oligonucleotide-mediated inhibition of 3' UTR splicing efficiently reduces oncogene expression and impedes tumour progression. Notably, CTNNB1 3' UTR splicing is the most consistently dysregulated event across cancers. We validate its upregulation in hepatocellular carcinoma and colon adenocarcinoma, and show that the spliced 3' UTR variant is the predominant contributor to its oncogenic functions. Overall, our study highlights the importance of 3' UTR splicing in cancer and may launch new avenues for RNA-based anti-cancer therapeutics.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , 3' Untranslated Regions/genetics , Adenocarcinoma/genetics , Alternative Splicing/genetics , Animals , Carcinogenesis/genetics , Colonic Neoplasms/genetics , Mammals , Up-Regulation
3.
J Invest Dermatol ; 140(10): 2032-2040.e1, 2020 10.
Article in English | MEDLINE | ID: mdl-32119868

ABSTRACT

Hyperpigmentary conditions can arise when melanogenesis in the epidermis is misregulated. Understanding the pathways underlying melanogenesis is essential for the development of effective treatments. Here, we report that a group of metabolites called polyamines are important in the control of melanogenesis in human skin. Polyamines are cationic molecules present in all cells and are essential for cellular function. We report that polyamine regulator ODC1 is upregulated in melanocytes from melasma lesional skin. We report that the polyamine putrescine can promote pigmentation in human skin explants and primary normal human epidermal melanocytes through induction of tyrosinase which is rate-limiting for the synthesis of melanin. Putrescine supplementation on normal human epidermal melanocytes results in the activation of polyamine catabolism, which results in increased intracellular H2O2. Polyamine catabolism is also increased in human skin explants that have been treated with putrescine. We further report that inhibition of polyamine catabolism prevents putrescine-induced promotion of tyrosinase levels and pigmentation in normal human epidermal melanocytes, showing that polyamine catabolism is responsible for the putrescine induction of melanogenesis. Our data showing that putrescine promotes pigmentation has important consequences for hyperpigmented and hypopigmented conditions. Further understanding of how polyamines control epidermal pigmentation could open the door for the development of new therapeutics.


Subject(s)
Epidermis/drug effects , Melanins/biosynthesis , Putrescine/pharmacology , Biogenic Polyamines/metabolism , Cells, Cultured , Dicarboxylic Acid Transporters/physiology , Epidermis/metabolism , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Middle Aged , Mitochondrial Membrane Transport Proteins/physiology , Putrescine/analogs & derivatives , Skin Pigmentation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...