Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(10): e78171, 2013.
Article in English | MEDLINE | ID: mdl-24205146

ABSTRACT

Marek's disease (MD) is an economically significant disease in chickens caused by the highly oncogenic Marek's disease virus (MDV). Understanding the genes and biological pathways that confer MD genetic resistance should lead towards the development of more disease resistant commercial poultry flocks or improved MD vaccines. MDV mEq, a bZIP transcription factor, is largely attributed to viral oncogenicity though only a few host target genes have been described, which has impeded our understanding of MDV-induced tumorigenesis. Given the importance of mEq in MDV-induced pathogenesis, we explored the role of mEq in genetic resistance to MDV. Using global transcriptome analysis and cells from MD resistant or susceptible birds, we compared the response to infection with either wild type MDV or a nononcogenic recombinant lacking mEq. As a result, we identified a number of specific genes and pathways associated with either MD resistance or susceptibility. Additionally, integrating prior information from ChIP-seq, microarray analysis, and SNPs exhibiting allele-specific expression (ASE) in response to MDV infection, we were able to provide evidence for 24 genes that are polymorphic within mEq binding sites are likely to account for gene expression in an allele-specific manner and potentially for the underlying genetic differences in MD incidence.


Subject(s)
Marek Disease/genetics , Poultry Diseases/genetics , Alleles , Animals , Chickens , Transcription, Genetic/genetics
2.
J Virol ; 87(16): 9016-29, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23740999

ABSTRACT

Marek's disease (MD) is an economically significant disease in chickens that is caused by the highly oncogenic Marek's disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is critically involved in viral oncogenicity, but only a few of its host target genes have been described, impeding our understanding of MDV-induced tumorigenesis. Using chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray analysis, a high-confidence list of Meq binding sites in the chicken genome and a global transcriptome of Meq-responsive genes were generated. Meq binding sites were found to be enriched in the promoter regions of upregulated genes but not in those of downregulated genes. ChIP-seq was also performed for c-Jun, a known heterodimeric partner of Meq. The close location of binding sites of Meq and c-Jun was noted, suggesting cooperativity between these two factors in modulating transcription. Pathway analysis indicated that Meq transcriptionally regulates many genes that are part of several signaling pathways including the extracellular signal-regulated kinase /mitogen-activated protein kinase (ERK/MAPK), Jak-STAT, and ErbB pathways, which are critical for oncogenesis and/or include signaling mediators involved in apoptosis. Meq activates oncogenic signaling cascades by transcriptionally activating major kinases in the ERK/MAPK pathway and simultaneously repressing phosphatases, as verified using inhibitors of MEK and ERK1/2 in a cell proliferation assay. This study provides significant insights into the mechanistic basis of Meq-dependent cell transformation.


Subject(s)
Cell Transformation, Viral , Host-Pathogen Interactions , Mardivirus/pathogenicity , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Animals , Binding Sites , Cell Line , Chickens , Chromatin Immunoprecipitation , DNA/metabolism , Gene Expression Profiling , Microarray Analysis , Promoter Regions, Genetic , Protein Binding , Sequence Analysis, DNA , Signal Transduction , Transcription, Genetic
3.
BMC Syst Biol ; 6: 123, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22979947

ABSTRACT

BACKGROUND: Marek's Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30(hi)) and are in minority, while the non-neoplastic cells (CD30(lo)) form the majority of population. MD is a unique natural in-vivo model of human CD30(hi) lymphomas with both natural CD30(hi) lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30(lo) expressing phenotype to CD30(hi) expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30(lo) and CD30(hi) cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. RESULTS: Our results show that a) CD30(lo) lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. CONCLUSIONS: In the context of the MD lymphoma microenvironment (and potentially in other CD30(hi) lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.


Subject(s)
Cell Transformation, Viral , Gene Expression Regulation, Neoplastic , Herpesvirus 2, Gallid/physiology , Ki-1 Antigen/genetics , Lymphocytes/metabolism , Marek Disease/virology , NF-kappa B/metabolism , Animals , Cell Line , Chickens , Disease Susceptibility , Genotype , Herpesvirus 2, Gallid/metabolism , Humans , Lymphocytes/pathology , Lymphocytes/virology , Lymphoma/pathology , Oncogene Proteins, Viral/metabolism , Promoter Regions, Genetic/genetics , Protein Isoforms/metabolism , Transcriptional Activation , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...