Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci (Basel) ; 8(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963146

ABSTRACT

Here we investigate whether the presence of germinal vesicle-stage oocytes (GV- oocytes) reflects poor oocyte developmental competence (or quality). This was a prospective, non-randomised, cohort pilot-study involving 60 patients undergoing in vitro fertilization/ intracytoplasmic sperm injection for whom complete pregnancy outcome data were available. Patients in whom GV- oocytes were retrieved (GV+) at transvaginal oocyte retrieval (TVOR) were compared with those from whom no GVs were retrieved (GV-). We found that GV+ (n = 29) and GV- (n = 31) patients were similarly aged (35.4 vs. 36.4 years; p = 0.446). GV+ patients had a mean of 2.41 ± 2.03 GVs and comparable yields of MII oocytes to GV- patients (11 ± 6.88 vs. 8.26 ± 4.84; p = 0.077). Compared with GV- patients, GV+ patients had markedly lower implantation rates (11.8% vs. 30.2%; p = 0.022) as well as oocyte utilisation rates for clinical pregnancy (2.3% vs. 6.8%; p = 0.018) and live-birth (1.9% vs. 5.7%; p = 0.029). DNA damage levels measured using γH2AX immunostaining were not different in oocytes from women <36 years versus those ≥36 years (p = 0.606). Thus, patients who have GV- stage oocytes at TVOR exhibit poor oocyte quality reflected in reduced per-oocyte pregnancy success rates and uniformly high levels of oocyte DNA damage.

2.
Mol Oncol ; 11(5): 470-490, 2017 05.
Article in English | MEDLINE | ID: mdl-28173629

ABSTRACT

Activating KRAS mutations drive colorectal cancer tumorigenesis and influence response to anti-EGFR-targeted therapy. Despite recent advances in understanding Ras signaling biology and the revolution in therapies for melanoma using BRAF inhibitors, no targeted agents have been effective in KRAS-mutant cancers, mainly due to activation of compensatory pathways. Here, by leveraging the largest synthetic lethal genetic interactome in yeast, we identify that KRAS-mutated colorectal cancer cells have augmented homologous recombination repair (HRR) signaling. We found that KRAS mutation resulted in slowing and stalling of the replication fork and accumulation of DNA damage. Moreover, we found that KRAS-mutant HCT116 cells have an increase in MYC-mediated RAD51 expression with a corresponding increase in RAD51 recruitment to irradiation-induced DNA double-strand breaks (DSBs) compared to genetically complemented isogenic cells. MYC depletion using RNA interference significantly reduced IR-induced RAD51 foci formation and HRR. On the contrary, overexpression of either HA-tagged wild-type (WT) MYC or phospho-mutant S62A increased RAD51 protein levels and hence IR-induced RAD51 foci. Likewise, depletion of RAD51 selectively induced apoptosis in HCT116-mutant cells by increasing DSBs. Pharmacological inhibition targeting HRR signaling combined with PARP inhibition selectivity killed KRAS-mutant cells. Interestingly, these differences were not seen in a second isogenic pair of KRAS WT and mutant cells (DLD-1), likely due to their nondependency on the KRAS mutation for survival. Our data thus highlight a possible mechanism by which KRAS-mutant-dependent cells drive HRR in vitro by upregulating MYC-RAD51 expression. These data may offer a promising therapeutic vulnerability in colorectal cancer cells harboring otherwise nondruggable KRAS mutations, which warrants further investigation in vivo.


Subject(s)
Colorectal Neoplasms/genetics , Homologous Recombination , Proto-Oncogene Proteins p21(ras)/genetics , Rad51 Recombinase/genetics , Saccharomyces cerevisiae/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , DNA Breaks, Double-Stranded , DNA Damage , DNA-Binding Proteins/genetics , Dose-Response Relationship, Drug , ErbB Receptors/genetics , HCT116 Cells , Humans , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA, Small Interfering/genetics , Rad51 Recombinase/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...