Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891319

ABSTRACT

This study was conducted for the comparative analysis of antioxidant activity and untargeted metabolomics of dark- and light-colored sour cherry cultivars grown in Canada. Based on our previous study, we selected four cultivars-'Heimann R', 'Gorsemska', V70142, and 'Montmorency'-to determine the untargeted metabolites and their role in antioxidant activities. A total of 473 metabolites were identified from four sour cherry genotypes using UPLC-ToF-MS. Untargeted metabolomics revealed the dominant chemical groups present in sour cherries. PCA showed that the diversity in sour cherry metabolites was due to the genotype differences indicating iditol, malic acid, chlorobenzene, 2-mercaptobenzothiazole, and pyroglutamic acid as the predominant contributors. The variable importance in the projection (VIP > 1.0) in partial least-squares-discriminant analysis described 20 biomarker metabolites representing the cherry metabolome profiles. A heatmap of Pearson's correlation analysis between the 20 biomarker metabolites and antioxidant activities identified seven antioxidant determinants that displayed the highest correlations with different types of antioxidant activities. TPC and TAC were evaluated using the Folin-Ciocalteu method. The total antioxidant activity was performed using three different assays (ABTS, FRAP, and DPPH). This study of correlating metabolomics and antioxidant activities elucidated that the higher nutritional value and biological functions of sour cherry genotypes can be useful for the development of nutraceutical and functional foods.

2.
Plants (Basel) ; 13(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256845

ABSTRACT

Black knot (BK) is a deadly disease of European (Prunus domestica) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. Generally, phytopathogens hamper the balance of primary defense phytohormones, such as salicylic acid (SA)-jasmonic acid (JA) balance, for disease progression. Thus, we quantified the important phytohormone titers in tissues of susceptible and resistant genotypes belonging to European and Japanese plums at five different time points. Our previous results suggested that auxin-cytokinins interplay driven by A. morbosa appeared to be vital in disease progression by hampering the plant defense system. Here, we further show that such hampering of disease progression is likely mediated by perturbance in SA, JA, and, to some extent, gibberellic acid. The results further indicate that SA and JA in plant defense are not always necessarily antagonistic as most of the studies suggest but can be different, especially in woody perennials. Together, our results suggest that the changes in phytohormone levels, especially in terms of SA and JA content due to BK infection and progression in plums, could be used as phytohormonal markers in the identification of BK-resistant cultivars.

3.
Plants (Basel) ; 12(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37896101

ABSTRACT

Black Knot (BK) is a deadly disease of European (Prunus domestics) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. After infection, the appearance of warty black knots indicates a phytohormonal imbalance in infected tissues. Based on this hypothesis, we quantified phytohormones such as indole-3-acetic acid, tryptophan, indoleamines (N-acetylserotonin, serotonin, and melatonin), and cytokinins (zeatin, 6-benzyladenine, and 2-isopentenyladenine) in temporally collected tissues of susceptible and resistant genotypes belonging to European and Japanese plums during of BK progression. The results suggested auxin-cytokinins interplay driven by A. morbosa appears to be vital in disease progression by hampering the plant defense system. Taken together, our results indicate the possibility of using the phytohormone profile as a biomarker for BK resistance in plums.

4.
Hortic Res ; 10(2): uhac280, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36793756

ABSTRACT

Camelina sativa is a self-pollinating and facultative outcrossing oilseed crop. Genetic engineering has been used to improve camelina yield potential for altered fatty acid composition, modified protein profiles, improved seed and oil yield, and enhanced drought resistance. The deployment of transgenic camelina in the field posits high risks related to the introgression of transgenes into non-transgenic camelina and wild relatives. Thus, effective bioconfinement strategies need to be developed to prevent pollen-mediated gene flow (PMGF) from transgenic camelina. In the present study, we overexpressed the cleistogamy (i.e. floral petal non-openness)-inducing PpJAZ1 gene from peach in transgenic camelina. Transgenic camelina overexpressing PpJAZ1 showed three levels of cleistogamy, affected pollen germination rates after anthesis but not during anthesis, and caused a minor silicle abortion only on the main branches. We also conducted field trials to examine the effects of the overexpressed PpJAZ1 on PMGF in the field, and found that the overexpressed PpJAZ1 dramatically inhibited PMGF from transgenic camelina to non-transgenic camelina under the field conditions. Thus, the engineered cleistogamy using the overexpressed PpJAZ1 is a highly effective bioconfinement strategy to limit PMGF from transgenic camelina, and could be used for bioconfinement in other dicot species.

5.
Crit Rev Food Sci Nutr ; : 1-23, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36343386

ABSTRACT

Fruits and vegetables are an integral part of our diet attributed to their appealing taste, flavor, and health-promoting characteristics. However, due to their high-water activity, they are susceptible to microbial spoilage and diseases at any step in the food supply chain, from pre-harvest treatment to post-harvest storage and transportation. As a result, food researchers and engineers are developing innovative technologies that can be used to reduce the loss of fruits and vegetables on-farm and during postharvest processing. The purpose of this study was to gather and discuss the scientific data on the disease-suppressive activity of nanoparticles against plant pathogens. The progress and limitations of innovative approaches for improving nanoparticles' efficiency and dependability have been studied to develop effective substitutes for synthetic chemical fungicides and pesticides, in managing disease in fruits and vegetables. The findings of this study strongly suggests that nanotechnology has the required ability for disease suppression in fruits and vegetables. Applications of specific nanoparticles under specified conditions can enhance nutrition delivery to plants, provide better antibacterial and disease suppression activity. Nanoparticles can also lessen the quantity of agrichemicals/metals released into the environment as compared to standard formulations, which is one of the most impressive advances.

6.
Sci Rep ; 12(1): 16607, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198728

ABSTRACT

Carrot processing industries produce 25-30% of waste in the form of carrot rejects, peels, and pomace which contain a large amount of high-value bioactive components. Green extraction of the bioactive components from carrot rejects with green solvents using closed-vessel energy-intensive microwave-assisted extraction was the objective of this work. In this work, three experimental studies were implemented. One uses 8 different green solvents for maximum yield of bioactive using green technology, and the other for the optimization of Microwave-assisted Extraction (MAE) parameters to enhance the bioactive components yield. Response Surface Methodology was employed to optimize the processing parameters including temperature, time, solid to solvent ratio, and solvent type. The optimized extraction conditions: treatment temperature of 50 °C for 5 min gave a significantly higher yield of total carotenoids (192.81 ± 0.32 mg carotenoids/100 g DW), total phenolic (78.12 ± 0.35 g GAE/100 g DW), and antioxidants by FRAP (5889.63 ± 0.47 mM TE/100 g DW), ABTS (1143.65 ± 0.81 mM TE/100 g DW), and DPPH (823.14 ± 0.54 mM TE/100 g DW) using a solvent combination of hexane and ethanol (1:3) with solid to solvent ratio of 1:40 (w/v). This green technology in combination with GRAS solvents promoted the best recovery of bioactive from carrot rejects. Moreover, the solid residue remained after the extraction of bioactive components exhibited higher carbon content (46.5%) and calorific value (16.32 MJ/kg), showcasing its potential to be used as an energy source.


Subject(s)
Antioxidants , Daucus carota , Antioxidants/chemistry , Carbon , Carotenoids , Ethanol/chemistry , Hexanes , Industrial Waste , Plant Extracts/chemistry , Solvents/chemistry
7.
Commun Biol ; 5(1): 1012, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153380

ABSTRACT

Anthocyanins, a major class of flavonoids, are important pigments of grape berries. Despite the recent discovery of the genetic cause underlying the loss of color, the metabolomic and molecular responses are unknown. Anthocyanin quantification among diverse berry color muscadines suggests that all genotypes could produce adequate anthocyanin quantities, irrespective of berry color. Transcriptome profiling of contrasting color muscadine genotypes proposes a potential deficiency that occurs within the anthocyanin transport and/or degradation mechanisms and might cause unpigmented berries. Genome-wide association studies highlighted a region on chromosome-4, comprising several genes encoding glutathione S-transferases involved in anthocyanin transport. Sequence comparison among genotypes reveals the presence of two GST4b alleles that differ by substituting the conserved amino acid residue Pro171-to-Leu. Molecular dynamics simulations demonstrate that GST4b2-Leu171 encodes an inactive protein due to modifications within the H-binding site. Population genotyping suggests the recessive inheritance of the unpigmented trait with a GST4b2/2 homozygous. A model defining colorless muscadines' response to the mutation stimulus, avoiding the impact of trapped anthocyanins within the cytoplasm is established.


Subject(s)
Anthocyanins , Vitis , Amino Acids/metabolism , Anthocyanins/genetics , Flavonoids/analysis , Flavonoids/metabolism , Fruit/genetics , Fruit/metabolism , Genome-Wide Association Study , Glutathione/metabolism , Mutation , Transferases/metabolism , Vitis/genetics , Vitis/metabolism
8.
9.
Crit Rev Oncog ; 27(3): 23-31, 2022.
Article in English | MEDLINE | ID: mdl-37183936

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive blood cancer with limited chemotherapy options and negative patient outcomes. Investigations with bioactive compounds from dietary sources against cancer have increased in the recent years, which highlight the need for novel therapeutic approaches and new anti-leukemic agents possessing higher efficacy and selectivity for AML cells and fewer negative side effects. Bioactive compounds demonstrated the ability to induce cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration and tumor progression, etc. Bioactive compounds isolated from dietary sources such as mango ginger show promise for AML treatment. Curcuma amada roots have been used in traditional medicine and showed antioxidant, antimicrobial and anticancer properties. Bioactive molecules isolated from C. amada showed effects on the mitochondrial metabolism and reduced the viability of multiple leukemic cell lines.


Subject(s)
Curcuma , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Apoptosis
10.
Plants (Basel) ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34834695

ABSTRACT

'Honeycrisp' (Malus domestica Borkh.), a premium applecultivar, is highly susceptible to bitter pit and decline in quality during long-term storage. In order to enhance the quality, an aqueous composition containing hexanal was applied as a preharvest spray. The effects of hexanal were assessed on the treated fruit and compared with HarvistaTM (a sprayable 1-Methylcyclopropene based commercial formulation) applied and control fruit under both cold (2.5 °C; four months) and cold after room temperature storage (20 °C; 14 days) conditions. Color, firmness, and total soluble solids (TSS) did not show a significant change in response to any treatment at harvest, while abscisic acid (ABA) significantly reduced and tryptophan increased in response to hexanal, compared to HarvistaTM and control. The treatment effects on quality traits were observed during storage. Both hexanal and HarvistaTM sprayed apples had higher TSS under both cold and room temperature storage. In addition, both sprays enhanced firmness at room temperature storage. However, the effects of sprays on other quality traits showed a different pattern. Apples sprayed with hexanal had lower phospholipase D enzyme (PLD) activity, lower incidence of bitter pit, and decreased expression of MdPLDα1 compared to HarvistaTM and control. On the other hand, HarvistaTM treated fruit produced lower ethylene. Both sprays decreased the expression of MdPLDα4, MdCaM2, MdCaM4 and MdCML18 genes. Generally, PLD alpha has a direct role in promoting fruit senescence, whereas the calcium senor proteins (CaM/CMLs) may involve in fruit ripening process via calcium and ethylene interactions. Therefore, improved postharvest qualities, including the lower incidence of bitter pit in hexanal treated 'Honeycrisp', may be associated with lower membrane damage due to lower PLD enzyme activity and decreased expression of MdPLDα1 and MdPLDα4 genes throughout the storage period.

11.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34445535

ABSTRACT

Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in 'Honeycrisp'. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of 'Honeycrisp' apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-ß-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.


Subject(s)
Abscisic Acid/metabolism , Aldehydes/pharmacology , Cell Wall/metabolism , Fruit/growth & development , Malus/growth & development , Melatonin/metabolism , Plant Proteins/metabolism , Fruit/drug effects , Fruit/metabolism , Gene Expression Regulation, Plant , Malus/drug effects , Malus/metabolism , Plant Proteins/genetics
12.
Plant Dis ; 105(10): 3244-3249, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33434033

ABSTRACT

Plums are affected by a cancerous disease called "black knot disease" caused by the fungus Apiosporina morbosa. It affects both Japanese (Prunus salicina) and European (Prunus domestica) plums equally. To understand the spread of the disease, histological analysis was performed in two different European plum cultivars (susceptible and tolerant). Light and scanning electron microscope (SEM) analyses confirmed the presence of the growing hyphae in the internal tissues of the susceptible trees. By using stereoscopic analysis with a fluorescence filter, we were able to detect the hyphae in the visible lesion area. At about 2 inches from above and below the knots, no spore or hypha were visible with the light microscope. However, SEM images showed strong evidence that the fungus is capable of migrating to adjacent vessels in the susceptible plum genotype. In fact, at that distance below and above the knots, conidia were detected inside xylem vessels suggesting a systemic movement of the fungus that has not been shown so far. No symptoms were observed in the resistant genotype. Starch granules, vessel occlusions, and lipid droplets were the main distinguishable characteristics between susceptible and tolerant varieties.


Subject(s)
Ascomycota , Disease Resistance , Plant Diseases/microbiology , Prunus domestica , Ascomycota/pathogenicity , Fruit , Microscopy, Electron, Scanning , Prunus domestica/microbiology , Prunus domestica/ultrastructure , Trees
13.
J Exp Bot ; 72(2): 371-384, 2021 02 02.
Article in English | MEDLINE | ID: mdl-32945838

ABSTRACT

Fruit development is orchestrated by a complex network of interactions between hormone signaling pathways. The phytohormone gibberellin (GA) is known to regulate a diverse range of developmental processes; however, the mechanisms of GA action in perennial fruit species are yet to be elucidated. In the current study, a GA signaling gene PslSLY1, encoding a putative F-box protein that belongs to the SLY1 (SLEEPY1)/GID2 (gibberellin-insensitive dwarf2) gene family, was isolated from Japanese plum (Prunus salicina). PslSLY1 transcript abundance declined as fruit development progressed, along with potential negative feedback regulation of PslSLY1 by GA. Subcellular localization and protein-protein interaction assays suggested that PslSLY1 functions as an active GA signaling component that interacts with the ASK1 (Arabidopsis SKP1) subunit of an SCF-ubiquitin ligase complex and with PslDELLA repressors, in a GA-independent manner. By using a domain omission strategy, we illustrated that the F-box and C-terminal domains of PslSLY1 are essential for its interactions with the downstream GA signaling components. PslSLY1 overexpression in wild-type and Arabidopsissly1.10 mutant backgrounds resulted in a dramatic enhancement in overall plant growth, presumably due to triggered GA signaling. This includes germination characteristics, stem elongation, flower structure, and fertility. Overall, our findings shed new light on the GA strategy and signaling network in commercially important perennial crops.


Subject(s)
Arabidopsis Proteins , F-Box Proteins , Prunus domestica , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Gibberellins , Mutation , Prunus domestica/metabolism
14.
Plant Pathol J ; 36(2): 133-147, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32296293

ABSTRACT

Hexanal, a C-6 aldehyde has been implicated to have antimicrobial properties. Hence, this study was conducted to determine the antifungal activities of hexanal vapor against major postharvest pathogens of banana viz., Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured in vitro and exposed to hexanal vapor at 600, 800, 1,000 and 1,200 ppm. Mycelial growth of both fungal pathogens were inhibited completely at 800 ppm and the incidence of anthracnose and stem-end rot diseases reduced by 75.2% and 80.2%, respectively. The activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and glucanase had transiently increased in hexanal vapor treated banana by 5 to 7 days and declined thereafter. Postharvest treatment of banana with hexanal vapor resulted in phospholipase D inhibition and also resulted in cell wall thickening of the treated fruit, which impeded the penetration of the pathogenic spores. This was further confirmed by scanning electron micrographs. The defense-related protein intermediaries had increased in hexanal vapor treated banana fruit, which suggests induced resistance against C. gloeosporioides and L. theobromae, via., the phenylpropanoid pathway which plays a significant role in hindering the pathogen quiescence. Delayed ripening due to inhibition of phospholipase D enzyme, inhibition of mycelial growth and induced systemic resistance by defense enzymes collectively contributed to the postharvest disease reduction and extended shelf life of fruit.

15.
Hortic Res ; 4: 17042, 2017.
Article in English | MEDLINE | ID: mdl-29114390

ABSTRACT

Raspberry (Rubus spp.) is an economically important crop with a restricted growing season and very limited fruit shelf-life due to its extreme tenderness. In order to prolong its shelf life, an aqueous composition containing hexanal as the key active ingredient (HC) was applied as a preharvest spray during fruit development. The effects of HC were assessed using physiological, biochemical and anatomical parameters on the treated fruits and compared with the effects of mock inoculation which lacked hexanal. Sugars and acidity did not show a significant change in response to HC treatment, while the pulling force (the tension required to detach the berry from the receptacle) significantly improved in the HC-treated fruits, compared to control. Scanning electron microscope (SEM) analysis revealed a high correlation between the presence of rigid epidermal hairs and a stronger degree of attachment between berries and their receptacle in the HC treated fruits. Further, electron micrographs also showed abnormal crystalline depositions on the epidermal drupelets of the treated berries. Energy Dispersive X-ray Spectroscopy (EDS) analysis showed those crystals to be largely composed of calcium. HC treatment also resulted in the reduction of transcript level of three phospholipase D genes, as well as altered expression pattern of five members of the annexin gene family, and four calmodulin-binding transcription activators. Quantification of PLD activity showed that hexanal inhibited PLD activity in treated berries. The potential crosstalk between hexanal, phospholipase D activity and calcium and this crosstalk's role in delaying fruit softening and in prolonging storage life of fruits shelf life is discussed.

16.
Int J Mol Sci ; 18(7)2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28714880

ABSTRACT

Phosphatidylinositol 3-kinase (PI3K) is a key enzyme that phosphorylates phosphatidylinositol at 3'-hydroxyl position of the inositol head group initiating the generation of several phosphorylated phosphatidylinositols, collectively referred to as phosphoinositides. The function of PI3K in plant senescence and ethylene signal transduction process was studied by expression of Solanum lycopersicum PI3K in transgenic Nicotiana tabacum, and delineating its effect on flower senescence. Detached flowers of transgenic tobacco plants with overexpressed Sl-PI3K (OX) displayed accelerated senescence and reduced longevity, when compared to the flowers of wild type plants. Flowers from PI3K-overexpressing plants showed enhanced ethylene production and upregulated expression of 1-aminocyclopropane-1-carboxylic acid oxidase 1 (ACO1). Real time polymerase chain reaction (PCR) analysis showed that PI3K was expressed at a higher level in OX flowers than in the control. Seedlings of OX-lines also demonstrated a triple response phenotype with characteristic exaggerated apical hook, shorter hypocotyls and increased sensitivity to 1-aminocyclopropane-1-carboxylate than the control wild type seedlings. In floral tissue from OX-lines, Solanum lycopersicum phosphatidylinositol 3-kinase green fluorescent protein (PI3K-GFP) chimera protein was localized primarily in stomata, potentially in cytoplasm and membrane adjacent to stomatal pores in the guard cells. Immunoblot analysis of PI3K expression in OX lines demonstrated increased protein level compared to the control. Results of the present study suggest that PI3K plays a crucial role in senescence by enhancing ethylene biosynthesis and signaling.


Subject(s)
Ethylenes/biosynthesis , Flowers/growth & development , Nicotiana/growth & development , Nicotiana/genetics , Phosphatidylinositol 3-Kinases/genetics , Up-Regulation , Flowers/genetics , Fruit/cytology , Gene Expression Regulation, Plant , Genes, Plant , Green Fluorescent Proteins/metabolism , Solanum lycopersicum/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Plants, Genetically Modified , Pollen/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/genetics , Subcellular Fractions/metabolism , Time Factors , Up-Regulation/genetics
17.
J Agric Food Chem ; 63(11): 2935-46, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25727778

ABSTRACT

Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols.


Subject(s)
Anthocyanins/chemistry , Blueberry Plants/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Anthocyanins/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Food Preservation , Freeze Drying , Humans , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...