Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(47): 29564-29575, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479563

ABSTRACT

Energy storage is a key aspect in the smooth functioning of the numerous gadgets that aid easy maneuvering through modern life. Supercapacitors that store energy faradaically have recently emerged as potential inventions for which mechanical flexibility is an absolute requirement for their future applications. Flexible supercapacitors based on nanocellulose extracted from easily available waste materials via low cost methods have recently garnered great attention. In the present work, we discuss the construction of flexible, binder-free supercapacitive electrodes using nanocellulose extracted from locally available areca nut husks and polyaniline embedded with silver nanoparticles. The prepared electrodes were characterized using SEM, TEM, XRD, FTIR, EDX and electrochemical characterization techniques such as CV, galvanostatic charge-discharge, chronoamperometry and EIS. A specific capacitance of 780 F g-1 was obtained for the silver nanoparticle embedded polyaniline-nanocellulose (Ag-PANI-NC) substrate supported electrodes, which is ∼4.2 times greater than that of bare polyaniline-nanocellulose electrodes. We attributed this enhancement to a lowering of the activation energy barrier of correlated electron hopping among localized defect states in the composite matrix by the Ag nanoparticles. An energy density value of 15.64 W h kg-1 and a power density of 244.8 W kg-1 were obtained for the prepared electrodes. It was observed that the Ag-PANI-NC based electrode can retain ∼98% of its specific capacitance upon recovery from mechanical bending to extreme degrees.

2.
Photochem Photobiol Sci ; 18(1): 15-29, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30398278

ABSTRACT

The advanced lifestyle of the human race involves heavy usage of various gadgets which require copious supplies of energy for uninterrupted functioning. Due to the ongoing depletion of fossil fuels and the accelerating demand for other energy resources, renewable energy sources, especially solar cells, are being extensively explored as viable alternatives. Flexible solar cells have recently emerged as an advanced member of the photovoltaic family; the flexibility and pliability of these photovoltaic materials are advantageous from a practical point of view. Conventional flexible solar cell materials, when dispersed in solvents, are usually volatile and create severe stability issues when incorporated in devices. Recently, non-volatile, less viscous functional molecular liquids/gels have been proposed as potential materials for use in foldable device applications. This perspective article discusses the scope of surface-modified non-volatile molecular and nanomaterials in liquid/gel forms in the manufacturing and deployment of flexible photovoltaics.

3.
J Nanosci Nanotechnol ; 15(9): 7153-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716301

ABSTRACT

In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.

4.
J Nanosci Nanotechnol ; 15(1): 703-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328430

ABSTRACT

In this work we report the electrochemical performance comparison of two new hybrid supercapacitors one based on graphene as negative electrode and lead dioxide thin film as positive electrode and the other with graphene as negative electrode and lead dioxide-carbon nanotube composite as positive electrode in 0.1 M KOH electrolyte. In the present work, PbO2 was synthesized using sol-gel method which is one of the promising materials for hybrid supercapacitors. The XRD confirmed the single phase of the PbO2 and the grain size is 39 nm which has been determined using Scherrer's formula. Thin films of PbO2, PbO2-CNT composite and graphene were coated on the titanium substrate by electrophoretic deposition. Further material characterisation has been carried out using SEM, TEM, XPS and electrochemical characterisation using CV, charge/discharge and electrochemical impedance spectroscopy (EIS) for obtaining energy density and power density, cyclic stability and internal resistance respectively. The present results revealed that PbO2-CNT composite/graphene asymmetric hybrid supercapacitor exhibits large specific capacitance and energy density over PbO2/graphene based system. The PbO2-CNT composite/graphene asymmetric hybrid supercapacitor exhibited maximum power density and energy density of 1200 W/Kg and 65 Wh/Kg respectively at a current density of 2 A/g. The PbO2-CNT composite/graphene asymmetric hybrid system exhibited excellent cycling stability with the capacitance retained 85% of its maximum value up to 3000 cycles.

5.
J Nanosci Nanotechnol ; 15(1): 747-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328437

ABSTRACT

The present study reports an approach by which thin films of sucrose added olivine type LiMnPO4-Ccomposite and pristine LiMnPO4 is made by a technique of electrophoretic co-deposition in which pristine and composite samples were synthesized by a sol-gel route. These thin films with enhanced surface area is used to fabricate cathodes for rechargeable Li ion batteries. XRD confirms phase pure single crystalline orthorhombic structure. Transmission Electron Microscopy (TEM) images shows the carbon coating over LiMnPO4 and the particle size restricted in the nano regime. The presence of sp2 hybridized carbon on LiMnPO4 particles is confirmed by X-ray Photon spectroscopy (XPS). To explore the electrochemical behavior, cyclic voltammetry (CV) and cycling studies were performed. The specific capacity for LiMnPO4-C is found to be increased by 43% in comparison to the pristine LiMnPO4. It also exhibited 86% retention in capacity compared to the pristine LiMnPO4 (52%). The result indicates that a proper carbon coating can significantly improve the electronic conductivity and hence the specific capacity.

6.
Phys Chem Chem Phys ; 16(15): 6838-58, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24603940

ABSTRACT

One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the economic and ecological aspects of using nanotechnology are briefly introduced.


Subject(s)
Fluorescent Dyes , Nanotechnology , Solar Energy , Fluorescent Dyes/chemistry , Microscopy, Electron, Scanning , Titanium/chemistry
7.
J Nanosci Nanotechnol ; 13(8): 5607-12, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23882803

ABSTRACT

The present study provides the first reports of a novel approach of electrophoretic co-deposition technique by which titanium foils are coated with LiFePO4-carbon nanocomposites synthesized by sol gel route and processed into high-surface area cathodes for lithium ion batteries. The study elucidates how sucrose additions as carbon source can affect the surface morphology and the redox reaction behaviors underlying these cathodes and thereby enhance the battery performance. The phase and morphological analysis were done using XRD and XPS where the LiFePO4 formed was confirmed to be a high purity orthorhombic system. From the analysis of the relevant electrochemical parameters using cyclic voltammetry and electrochemical impedance spectroscopy, a 20% increment and 90% decrement in capacity and impedance values were observed respectively. The composite electrodes also exhibited a specific capacity of 130 mA h/g. It has been shown that cathodes based on such composite systems can allow significant room for improvement in the cycling performance at the electrode/electrolyte interface.

8.
Chem Commun (Camb) ; 47(20): 5753-5, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21499629

ABSTRACT

We report on the development and characterization of high performance supercapacitor electrodes synthesized using electrophoretic deposition of graphene, upon which the poly(pyrrole)-layer was electropolymerised. The highly capacitive electrode had a specific capacitance of 1510 F g(-1), area capacitance of 151 mF cm(-2) and volume capacitance of 151 F cm(-3) at 10 mV s(-1).


Subject(s)
Graphite/chemistry , Polymers/chemistry , Pyrroles/chemistry , Electrochemical Techniques , Electrodes , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Titanium/chemistry
9.
Soft Matter ; 3(5): 554-557, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-32900018

ABSTRACT

An increasing number of technologies require the fabrication of micro- and nanostructures over large areas. Soft lithographic methods are gaining in popularity for the manufacture of low-cost micrometre and sub-micrometre structures. Increasingly, these methods developed to structure organic resists can also be used to pattern inorganic materials. Here we introduce a simple lithographic technique that is able to pattern ceramic TiO micro- and nanostructures with high fidelity. Our method makes use of an electrohydrodynamic (EHD) film instability that is controlled by a laterally modulated electric field. A spin-coated film of a stabilized metal alkoxide precursor material was patterned using EHD lithography followed by a heat treatment at 400 °C to yield crystalline TiO micropatterns. Our technique is rather general and can be extended to a number of single- and multicomponent oxide systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...