Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(747): eadl1722, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748773

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cricetinae , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal
2.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38712124

ABSTRACT

Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.

3.
bioRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37808679

ABSTRACT

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

4.
Cell Host Microbe ; 30(12): 1745-1758.e7, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36356586

ABSTRACT

The rapid emergence of SARS-CoV-2 variants challenges vaccination strategies. Here, we collected 201 serum samples from persons with a single infection or multiple vaccine exposures, or both. We measured their neutralization titers against 15 natural variants and 7 variants with engineered spike mutations and analyzed antigenic diversity. Antigenic maps of primary infection sera showed that Omicron sublineages BA.2, BA.4/BA.5, and BA.2.12.1 are distinct from BA.1 and more similar to Beta/Gamma/Mu variants. Three mRNA COVID-19 vaccinations increased neutralization of BA.1 more than BA.4/BA.5 or BA.2.12.1. BA.1 post-vaccination infection elicited higher neutralization titers to all variants than three vaccinations alone, although with less neutralization to BA.2.12.1 and BA.4/BA.5. Those with BA.1 infection after two or three vaccinations had similar neutralization titer magnitude and antigenic recognition. Accounting for antigenic differences among variants when interpreting neutralization titers can aid the understanding of complex patterns in humoral immunity that informs the selection of future COVID-19 vaccine strains.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccination , Antibodies, Viral , Antibodies, Neutralizing
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33571106

ABSTRACT

The contributions of asymptomatic infections to herd immunity and community transmission are key to the resurgence and control of COVID-19, but are difficult to estimate using current models that ignore changes in testing capacity. Using a model that incorporates daily testing information fit to the case and serology data from New York City, we show that the proportion of symptomatic cases is low, ranging from 13 to 18%, and that the reproductive number may be larger than often assumed. Asymptomatic infections contribute substantially to herd immunity, and to community transmission together with presymptomatic ones. If asymptomatic infections transmit at similar rates as symptomatic ones, the overall reproductive number across all classes is larger than often assumed, with estimates ranging from 3.2 to 4.4. If they transmit poorly, then symptomatic cases have a larger reproductive number ranging from 3.9 to 8.1. Even in this regime, presymptomatic and asymptomatic cases together comprise at least 50% of the force of infection at the outbreak peak. We find no regimes in which all infection subpopulations have reproductive numbers lower than three. These findings elucidate the uncertainty that current case and serology data cannot resolve, despite consideration of different model structures. They also emphasize how temporal data on testing can reduce and better define this uncertainty, as we move forward through longer surveillance and second epidemic waves. Complementary information is required to determine the transmissibility of asymptomatic cases, which we discuss. Regardless, current assumptions about the basic reproductive number of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) should be reconsidered.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/transmission , Basic Reproduction Number , COVID-19/physiopathology , Disease Outbreaks , Humans , New York City/epidemiology
6.
J R Soc Interface ; 17(167): 20200273, 2020 06.
Article in English | MEDLINE | ID: mdl-32574544

ABSTRACT

Predicting arbovirus re-emergence remains challenging in regions with limited off-season transmission and intermittent epidemics. Current mathematical models treat the depletion and replenishment of susceptible (non-immune) hosts as the principal drivers of re-emergence, based on established understanding of highly transmissible childhood diseases with frequent epidemics. We extend an analytical approach to determine the number of 'skip' years preceding re-emergence for diseases with continuous seasonal transmission, population growth and under-reporting. Re-emergence times are shown to be highly sensitive to small changes in low R0 (secondary cases produced from a primary infection in a fully susceptible population). We then fit a stochastic Susceptible-Infected-Recovered (SIR) model to observed case data for the emergence of dengue serotype DENV1 in Rio de Janeiro. This aggregated city-level model substantially over-estimates observed re-emergence times either in terms of skips or outbreak probability under forward simulation. The inability of susceptible depletion and replenishment to explain re-emergence under 'well-mixed' conditions at a city-wide scale demonstrates a key limitation of SIR aggregated models, including those applied to other arboviruses. The predictive uncertainty and high skip sensitivity to epidemiological parameters suggest a need to investigate the relevant spatial scales of susceptible depletion and the scaling of microscale transmission dynamics to formulate simpler models that apply at coarse resolutions.


Subject(s)
Dengue , Epidemics , Brazil/epidemiology , Child , Cities , Dengue/epidemiology , Disease Outbreaks , Humans
7.
Nat Commun ; 10(1): 1660, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30971703

ABSTRACT

Influenza A viruses evolve rapidly to escape host immunity, causing reinfection. The form and duration of protection after each influenza virus infection are poorly understood. We quantify the dynamics of protective immunity by fitting individual-level mechanistic models to longitudinal serology from children and adults. We find that most protection in children but not adults correlates with antibody titers to the hemagglutinin surface protein. Protection against circulating strains wanes to half of peak levels 3.5-7 years after infection in both age groups, and wanes faster against influenza A(H3N2) than A(H1N1)pdm09. Protection against H3N2 lasts longer in adults than in children. Our results suggest that influenza antibody responses shift focus with age from the mutable hemagglutinin head to other epitopes, consistent with the theory of original antigenic sin, and might affect protection. Imprinting, or primary infection with a subtype, has modest to no effect on the risk of non-medically attended infections in adults.


Subject(s)
Antibodies, Viral/blood , Cross Protection/immunology , Immunologic Memory/immunology , Influenza, Human/immunology , Models, Biological , Adolescent , Adult , Age Factors , Aged , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Child , Child, Preschool , Female , Follow-Up Studies , Hemagglutinins/immunology , Hong Kong/epidemiology , Humans , Incidence , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/virology , Longitudinal Studies , Male , Middle Aged , Randomized Controlled Trials as Topic , Time Factors , Young Adult
8.
PLoS Comput Biol ; 12(12): e1005204, 2016 12.
Article in English | MEDLINE | ID: mdl-27977667

ABSTRACT

Despite the availability of vaccines, influenza remains a major public health challenge. A key reason is the virus capacity for immune escape: ongoing evolution allows the continual circulation of seasonal influenza, while novel influenza viruses invade the human population to cause a pandemic every few decades. Current vaccines have to be updated continually to keep up to date with this antigenic change, but emerging 'universal' vaccines-targeting more conserved components of the influenza virus-offer the potential to act across all influenza A strains and subtypes. Influenza vaccination programmes around the world are steadily increasing in their population coverage. In future, how might intensive, routine immunization with novel vaccines compare against similar mass programmes utilizing conventional vaccines? Specifically, how might novel and conventional vaccines compare, in terms of cumulative incidence and rates of antigenic evolution of seasonal influenza? What are their potential implications for the impact of pandemic emergence? Here we present a new mathematical model, capturing both transmission dynamics and antigenic evolution of influenza in a simple framework, to explore these questions. We find that, even when matched by per-dose efficacy, universal vaccines could dampen population-level transmission over several seasons to a greater extent than conventional vaccines. Moreover, by lowering opportunities for cross-protective immunity in the population, conventional vaccines could allow the increased spread of a novel pandemic strain. Conversely, universal vaccines could mitigate both seasonal and pandemic spread. However, where it is not possible to maintain annual, intensive vaccination coverage, the duration and breadth of immunity raised by universal vaccines are critical determinants of their performance relative to conventional vaccines. In future, conventional and novel vaccines are likely to play complementary roles in vaccination strategies against influenza: in this context, our results suggest important characteristics to monitor during the clinical development of emerging vaccine technologies.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human , Models, Immunological , Models, Statistical , Pandemics , Vaccination/statistics & numerical data , Computational Biology , Humans , Influenza A virus/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Pandemics/prevention & control , Pandemics/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...