Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Res ; 189: 119-127, 2020 05.
Article in English | MEDLINE | ID: mdl-32208214

ABSTRACT

BACKGROUND: Vascular targeting uses molecular markers on the surface of diseased vasculature for ligand-directed drug delivery to induce vessel occlusion or destruction. In the absence of discriminatory markers, such as in brain arteriovenous malformations (AVMs), stereotactic radiosurgery may be used to prime molecular changes on the endothelial surface. This study explored αB-crystallin (CRYAB) as a radiation induced target and pre-tested the specificity and efficacy of a CRYAB-targeting coaguligand for in vitro thrombus induction. METHODS: A parallel-plate flow system was established to circulate human whole blood over a layer of human brain endothelial cells. A conjugate of anti-CRYAB antibody and thrombin was injected into the circuit to compare binding and thrombus formation on cells with or without prior radiation treatment (0-25 Gy). RESULTS: Radiation increased CRYAB expression and surface exposure in human brain endothelial cells. In the parallel-plate flow system, the targeted anti-CRYAB-thrombin conjugate increased thrombus formation on the surface of irradiated cells relative to non-irradiated cells and to a non-targeting IgG-thrombin conjugate. Fibrin deposition and accumulation of fibrinogen degradation products increased significantly at radiation doses at or above 15 Gy with conjugate concentrations of 1.25 and 2.5 µg/mL. CONCLUSIONS: CRYAB exposure can be detected at the surface of human brain endothelial cells in response to irradiation. Pro-thrombotic CRYAB-targeting conjugates can bind under high flow conditions and in the presence of whole blood induce stable thrombus formation with high specificity and efficacy on irradiated surfaces. CRYAB provides a novel radiation marker for potential vascular targeting in irradiated brain AVMs.


Subject(s)
Arteriovenous Malformations , Crystallins , Thrombosis , Brain , Endothelial Cells , Humans
2.
Transl Stroke Res ; 11(4): 689-699, 2020 08.
Article in English | MEDLINE | ID: mdl-31802427

ABSTRACT

Brain arteriovenous malformations (AVMs) are a significant cause of intracerebral hemorrhage in children and young adults. Currently, one third of patients have no viable treatment options. Vascular targeting agents (VTAs) are being designed to deliver pro-thrombotic molecules to the abnormal AVM vessels for rapid occlusion and cure. This study assessed the efficacy of a pro-thrombotic VTA targeting phosphatidylserine (PS) in a radiation-primed AVM animal model. The model AVM was surgically created in rats by anastomosis of the left external jugular vein to the adjacent common carotid artery. After 6 weeks, the AVM was irradiated (20 Gy) using gamma knife surgery (GKS). A PS-targeting VTA was created by conjugation of annexin V with human thrombin and administered intravenously 3 weeks post-GKS or sham. Unconjugated thrombin was used as a non-targeting control. AVM thrombosis and occlusion was monitored 3 weeks later by angiography and histology. Preliminary experiments established a safe dose of active thrombin for systemic administration. Subsequently, a single dose of annexin V-thrombin conjugate (0.77 mg/kg) resulted in angiographic AVM occlusion in sham (75%) and irradiated (63%) animals, while non-targeted thrombin did not. Lowering the conjugate dose (0.38 mg/kg) decreased angiographic AVM occlusion in sham (13%) relative to irradiated (80%) animals (p = 0.03) as did delivery of two consecutive doses of 0.38 mg/kg, 2 days apart (sham (0%); irradiated (78%); p = 0.003). These findings demonstrate efficacy of the PS-targeting VTA and the feasibility of a vascular targeting approach for occlusion of high-flow AVMs. Targeting specificity can be enhanced by radiation-sensitization and VTA dose modification.


Subject(s)
Disease Models, Animal , Fibrinolytic Agents/administration & dosage , Intracranial Arteriovenous Malformations/therapy , Phosphatidylserines/administration & dosage , Thrombolytic Therapy/methods , Animals , Annexin A5/administration & dosage , Intracranial Arteriovenous Malformations/pathology , Radiosurgery , Rats, Sprague-Dawley , Thrombin/administration & dosage
3.
Int J Mol Sci ; 20(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757032

ABSTRACT

Vascular targeting with pro-thrombotic antibody-conjugates is a promising biological treatment for brain arteriovenous malformations (bAVMs). However, targeted drug delivery relies on the identification of unique or overexpressed markers on the surface of a target cell. In the absence of inherent biological markers, stereotactic radiosurgery may be used to prime induction of site-specific and targetable molecular changes on the endothelial surface. To investigate lumen-accessible, endothelial targets induced by radiation, we combined Gamma knife surgery in an AVM animal model with in vivo biotin-labeling and comparative proteomics. Two proteins, αB-crystallin (CRYAB)-a small heat shock protein that normally acts as an intracellular chaperone to misfolded proteins-and activated leukocyte cell adhesion molecule CD166, were further validated for endothelial surface expression after irradiation. Immunostaining of endothelial cells in vitro and rat AVM tissue ex vivo confirmed de novo induction of CRYAB following irradiation (20 Gy). Western analysis demonstrated that CRYAB accumulated intracellularly as a 20 kDa monomer, but, at the cell surface, a novel 65 kDa protein was observed, suggesting radiation stimulates translocation of an atypical CRYAB isoform. In contrast, CD166 had relatively high expression in non-irradiated cells, localized predominantly to the lateral surfaces. Radiation increased CD166 surface exposure by inducing translocation from intercellular junctions to the apical surface without significantly altering total protein levels. These findings reinforce the dynamic molecular changes induced by radiation exposure, particularly at the cell surface, and support further investigation of radiation as a priming mechanism and these molecules as putative targets for focused drug delivery in irradiated tissue.


Subject(s)
Crystallins/metabolism , Endothelial Cells/radiation effects , Intracranial Arteriovenous Malformations/radiotherapy , Microtubule-Associated Proteins/metabolism , Radiosurgery/adverse effects , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Animals , Cell Membrane/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Gamma Rays/adverse effects , Intracranial Arteriovenous Malformations/metabolism , Mice , Protein Transport , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...