Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomed Eng Online ; 23(1): 61, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915091

ABSTRACT

BACKGROUND: The monitoring and analysis of quasi-periodic biological signals such as electrocardiography (ECG), intracranial pressure (ICP), and cerebral blood flow velocity (CBFV) waveforms plays an important role in the early detection of adverse patient events and contributes to improved care management in the intensive care unit (ICU). This work quantitatively evaluates existing computational frameworks for automatically extracting peaks within ICP waveforms. METHODS: Peak detection techniques based on state-of-the-art machine learning models were evaluated in terms of robustness to varying noise levels. The evaluation was performed on a dataset of ICP signals assembled from 700 h of monitoring from 64 neurosurgical patients. The groundtruth of the peak locations was established manually on a subset of 13, 611 pulses. Additional evaluation was performed using a simulated dataset of ICP with controlled temporal dynamics and noise. RESULTS: The quantitative analysis of peak detection algorithms applied to individual waveforms indicates that most techniques provide acceptable accuracy with a mean absolute error (MAE) ≤ 10 ms without noise. In the presence of a higher noise level, however, only kernel spectral regression and random forest remain below that error threshold while the performance of other techniques deteriorates. Our experiments also demonstrated that tracking methods such as Bayesian inference and long short-term memory (LSTM) can be applied continuously and provide additional robustness in situations where single pulse analysis methods fail, such as missing data. CONCLUSION: While machine learning-based peak detection methods require manually labeled data for training, these models outperform conventional signal processing ones based on handcrafted rules and should be considered for peak detection in modern frameworks. In particular, peak tracking methods that incorporate temporal information between successive periods of the signals have demonstrated in our experiments to provide more robustness to noise and temporary artifacts that commonly arise as part of the monitoring setup in the clinical setting.


Subject(s)
Intracranial Pressure , Signal Processing, Computer-Assisted , Humans , Monitoring, Physiologic/methods , Machine Learning , Algorithms , Cerebrovascular Circulation , Signal-To-Noise Ratio
2.
Int J Biol Macromol ; 230: 123205, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36632962

ABSTRACT

The human sodium-dependent vitamin C transporter-1 (hSVCT1) is localized at the apical membrane domain of polarized intestinal and renal epithelial cells to mediate ascorbic acid (AA) uptake. Currently, little is known about the array of interacting proteins that aid hSVCT1 trafficking and functional expression at the cell surface. Here we used an affinity tagging ('One-STrEP') and proteomic approach to identify hSVCT1 interacting proteins, which resolved secretory carrier-associated membrane protein-2 (SCAMP2) as a novel accessary protein partner. SCAMP2 was validated as an accessory protein by co-immunoprecipitation with hSVCT1. Co-expression of hSVCT1 and SCAMP2 in HEK-293 cells revealed both proteins co-localized in intracellular structures and at the plasma membrane. Functionally, over-expression of SCAMP2 potentiated 14C-AA uptake, and reciprocally silencing endogenous SCAMP2 decreased 14C-AA uptake. Finally, knockdown of endogenous hSVCT1 or SCAMP2 impaired differentiation of human-induced pluripotent stem cells (hiPSCs) toward a neuronal fate. These results establish SCAMP2 as a novel hSVCT1 accessary protein partner that regulates AA uptake in absorptive epithelia and during neurogenesis.


Subject(s)
Proteomics , Sodium-Coupled Vitamin C Transporters , Humans , HEK293 Cells , Cell Membrane/metabolism , Sodium-Coupled Vitamin C Transporters/genetics , Sodium-Coupled Vitamin C Transporters/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Neurons/metabolism , Protein Transport , Carrier Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
3.
Life Sci ; 308: 120944, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36096242

ABSTRACT

Neuronal uptake of ascorbic acid (AA) in humans occurs via the human sodium-dependent vitamin C transporter-2 (hSVCT2). Recent studies show that a significantly lower level of vitamin C is present in the blood of epileptic patients. Consequently, focused studies investigating the involved molecular mechanisms for hSVCT2 regulation are vital to enhance vitamin C body homeostasis. Currently, little is known about the role of valproic acid (VPA), a drug utilized to treat epilepsy and a class I histone deacetylase inhibitor (HDACi), on AA uptake in neuronal systems. Thus, this study aims to examine the effect of VPA on hSVCT2 functional expression in neuronal cells. VPA treatment upregulated the AA uptake and this increased AA uptake was associated with a significant increase in hSVCT2 expression and SLC23A2 promoter activity in SH-SY5Y cells. Knockdown of HDAC2, a predominant isoform in neuronal systems, significantly increased hSVCT2 functional expression. VPA treatment in mice displayed increased mouse (m)SVCT2 protein, mRNA and heterogenous nuclear RNA (hnRNA) expression in the brain. In addition, Yin Yang-1 (YY1), a transcription factor that drives the SLC23A2 promoter activity, protein and mRNA expression levels were markedly upregulated in VPA-treated SH-SY5Y cells and mice brain. Together, our findings suggest that VPA upregulates the functional expression of SVCT2 via HDAC2 and transcriptional mechanism(s).


Subject(s)
Neuroblastoma , Sodium-Coupled Vitamin C Transporters , Animals , Ascorbic Acid/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Protein Isoforms/metabolism , RNA, Heterogeneous Nuclear , RNA, Messenger/genetics , Sodium-Coupled Vitamin C Transporters/genetics , Sodium-Coupled Vitamin C Transporters/metabolism , Transcription Factors/metabolism , Valproic Acid/pharmacology , Vitamins
4.
PLoS One ; 14(10): e0224234, 2019.
Article in English | MEDLINE | ID: mdl-31639155

ABSTRACT

Colonocytes possess a specific carrier-mediated uptake process for the microbiota-generated thiamin (vitamin B1) pyrophosphate (TPP) that involves the TPP transporter (TPPT; product of the SLC44A4 gene). Little is known about the effect of exogenous factors (including enteric pathogens) on the colonic TPP uptake process. Our aim in this study was to investigate the effect of Enterohemorrhagic Escherichia coli (EHEC) infection on colonic uptake of TPP. We used human-derived colonic epithelial NCM460 cells and mice in our investigation. The results showed that infecting NCM460 cells with live EHEC (but not with heat-killed EHEC, EHEC culture supernatant, or with non-pathogenic E. Coli) to lead to a significant inhibition in carrier-mediated TPP uptake, as well as in level of expression of the TPPT protein and mRNA. Similarly, infecting mice with EHEC led to a significant inhibition in colonic TPP uptake and in level of expression of TPPT protein and mRNA. The inhibitory effect of EHEC on TPP uptake by NCM460 was found to be associated with reduction in the rate of transcription of the SLC44A4 gene as indicated by the significant reduction in the activity of the SLC44A4 promoter transfected into EHEC infected cells. The latter was also associated with a marked reduction in the level of expression of the transcription factors CREB-1 and ELF3, which are known to drive the activity of the SLC44A4 promoter. Finally, blocking the ERK1/2 and NF-kB signaling pathways in NCM460 cells significantly reversed the level of EHEC inhibition in TPP uptake and TPPT expression. Collectively, these findings show, for the first time, that EHEC infection significantly inhibit colonic uptake of TPP, and that this effect appears to be exerted at the level of SLC44A4 transcription and involves the ERK1/2 and NF-kB signaling pathways.


Subject(s)
Colon/metabolism , Enterohemorrhagic Escherichia coli/isolation & purification , Epithelial Cells/metabolism , Escherichia coli Infections/metabolism , Membrane Transport Proteins/genetics , Promoter Regions, Genetic , Thiamine Pyrophosphate/metabolism , Animals , Biological Transport , Cells, Cultured , Colon/microbiology , Epithelial Cells/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Gene Expression Regulation , Humans , Male , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...