Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 33(3): e2000228, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33296113

ABSTRACT

Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push-pull polymers with both F4 TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and FeCl3 . It is shown that for one particular push-pull material, the charge carriers created by doping are entirely non-conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push-pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co-reside.

2.
Chem Commun (Camb) ; 54(24): 2966-2969, 2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29372199

ABSTRACT

We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

3.
Adv Mater ; 28(1): 124-31, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26513532

ABSTRACT

Fullerene-free and processing additive-free 8.5% efficient polymer solar cells are achieved by using a new 3,4-ethylenedioxythiophene-linked arylene diimide dimer with a 76° twist angle. The devices combine high (78-83%) external quantum efficiency with high (0.91-0.95 V) photovoltages and thus have relatively low optical bandgap energy loss.

4.
Adv Mater ; 27(21): 3266-72, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25899623

ABSTRACT

Arylene linkers in a series of new tetraaza-benzodifluoranthene diimide dimers enable tuning of the 3D molecular structure of nonfullerene electron acceptors, facilitating observation of dramatic variation of the power conversion efficiency from 2.6% to 6.4% as the twist angle between the monomeric building blocks in the dimer is varied.

5.
J Am Chem Soc ; 136(41): 14589-97, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25265412

ABSTRACT

New electron-acceptor materials are long sought to overcome the small photovoltage, high-cost, poor photochemical stability, and other limitations of fullerene-based organic photovoltaics. However, all known nonfullerene acceptors have so far shown inferior photovoltaic properties compared to fullerene benchmark [6,6]-phenyl-C60-butyric acid methyl ester (PC60BM), and there are as yet no established design principles for realizing improved materials. Herein we report a design strategy that has produced a novel multichromophoric, large size, nonplanar three-dimensional (3D) organic molecule, DBFI-T, whose π-conjugated framework occupies space comparable to an aggregate of 9 [C60]-fullerene molecules. Comparative studies of DBFI-T with its planar monomeric analogue (BFI-P2) and PC60BM in bulk heterojunction (BHJ) solar cells, by using a common thiazolothiazole-dithienosilole copolymer donor (PSEHTT), showed that DBFI-T has superior charge photogeneration and photovoltaic properties; PSEHTT:DBFI-T solar cells combined a high short-circuit current (10.14 mA/cm(2)) with a high open-circuit voltage (0.86 V) to give a power conversion efficiency of 5.0%. The external quantum efficiency spectrum of PSEHTT:DBFI-T devices had peaks of 60-65% in the 380-620 nm range, demonstrating that both hole transfer from photoexcited DBFI-T to PSEHTT and electron transfer from photoexcited PSEHTT to DBFI-T contribute substantially to charge photogeneration. The superior charge photogeneration and electron-accepting properties of DBFI-T were further confirmed by independent Xenon-flash time-resolved microwave conductivity measurements, which correctly predict the relative magnitudes of the conversion efficiencies of the BHJ solar cells: PSEHTT:DBFI-T > PSEHTT:PC60BM > PSEHTT:BFI-P2. The results demonstrate that the large size, multichromophoric, nonplanar 3D molecular design is a promising approach to more efficient organic photovoltaic materials.


Subject(s)
Electric Power Supplies , Imides/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Solar Energy , Fullerenes/chemistry , Molecular Structure , Photochemical Processes , Quantum Theory
6.
Chem Commun (Camb) ; 50(74): 10801-4, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25089300

ABSTRACT

Side chain engineering of an n-type polymer provides a means of maintaining solubility while increasing crystallinity and electron mobility, leading to enhanced photocurrent. Bulk heterojunction solar cells composed of a side chain engineered copolymer (PNDIS-30BO) as acceptor and PSEHTT as donor give 10.4 mA cm(-2) photocurrent and 4.4% efficiency.

7.
Adv Mater ; 26(35): 6080-5, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25043958

ABSTRACT

All-polymer solar cells with 4.8% power conversion efficiency are achieved via solution processing from a co-solvent. The observed short-circuit current density of 10.5 mA cm(-2) and external quantum efficiency of 61.3% are also the best reported in all-polymer solar cells so far. The results demonstrate that processing the active layer from a co-solvent is an important strategy in achieving highly efficient all-polymer solar cells.

8.
J Am Chem Soc ; 135(40): 14960-3, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24083488

ABSTRACT

The lack of suitable acceptor (n-type) polymers has limited the photocurrent and efficiency of polymer/polymer bulk heterojunction (BHJ) solar cells. Here, we report an evaluation of three naphthalene diimide (NDI) copolymers as electron acceptors in BHJ solar cells which finds that all-polymer solar cells based on an NDI-selenophene copolymer (PNDIS-HD) acceptor and a thiazolothiazole copolymer (PSEHTT) donor exhibit a record 3.3% power conversion efficiency. The observed short circuit current density of 7.78 mA/cm(2) and external quantum efficiency of 47% are also the best such photovoltaic parameters seen in all-polymer solar cells so far. This efficiency is comparable to the performance of similarly evaluated [6,6]-Phenyl-C61-butyric acid methyl ester (PC60BM)/PSEHTT devices. The lamellar crystalline morphology of PNDIS-HD, leading to balanced electron and hole transport in the polymer/polymer blend solar cells accounts for its good photovoltaic properties.

10.
J Phys Chem Lett ; 4(2): 280-4, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-26283435

ABSTRACT

We use photoinduced absorption (PIA) spectroscopy to investigate pathways for photocurrent generation in hybrid organic/inorganic quantum dot bulk heterojunction solar cells. We study blends of the conjugated polymer poly(2,3-bis(2-(hexyldecyl)quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)dithieno[3,2-b:2',3'-d]pyrrole) (PDTPQx-HD) with PbS quantum dots and find that positively charged polarons are formed on the conjugated polymer following selective photoexcitation of the PbS quantum dots. This result provides a direct spectroscopic fingerprint demonstrating that photoinduced hole transfer occurs from the photoexcited quantum dots to the host polymer. We compute the relative yields of long-lived holes following photoexcitation of both the polymer and quantum dot phases and estimate that more long-lived polarons are produced per photon absorbed by the polymer phase than by the quantum dot phase.

11.
ACS Appl Mater Interfaces ; 2(11): 2974-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20945932

ABSTRACT

We demonstrate the use of n/p polymer/polymer heterojunctions deposited by sequential solution processing to fabricate ambipolar field-effect transistors and complementary logic circuits. Electron and hole mobilities in the transistors were ∼0.001-0.01 cm(2)/(V s) in air without encapsulation. Complementary circuits integrating multiple ambipolar transistors into NOT, NAND, and NOR gates were fabricated and shown to exhibit sharp signal switching with a high voltage gain.

SELECTION OF CITATIONS
SEARCH DETAIL
...