Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063080

ABSTRACT

The therapeutic potential of small molecule kinase inhibitors in cancer treatment is well recognized. However, achieving selectivity remains a formidable challenge, primarily due to the structural similarity of ATP binding pockets among kinases. Allosteric inhibition, which involves targeting binding pockets beyond the ATP-binding site, provides a promising alternative to overcome this challenge. In this study, a meticulous approach was implemented to prioritize type 3 inhibitors for LIMK2, employing a range of techniques including Molecular Dynamics (MD) simulations, e-pharmacophore-guided High Throughput Virtual Screening (HTVS), MM/GBSA and ADMETox analyses, Density Functional Theory (DFT) calculations, and MM/PBSA investigations. The e-pharmacophore model identifies a hypothesis featuring five essential pharmacophoric elements (RRRAH). Through virtual screening of the ZINC compound database, we identified only five compounds that align with all four pharmacophoric features: ZINC1044382792, ZINC1433610865, ZINC1044109145, ZINC952869440, and ZINC490621334. These compounds not only exhibit higher binding affinity but also demonstrate favorable ADME/Tox profiles. Molecular dynamics simulations underscore the stability of hydrogen bond interactions with critical cryptic LIMK2 pocket residues, Asp469 and Arg474, only for two compounds: ZINC143361086 and ZINC1044382792. These compounds also exhibit superior occupancy interactions, as indicated by HOMO-LUMO analysis. Additionally, binding free energy calculations highlight the significant affinities of these two compounds when complexed with LIMK2: -83.491 ± 1.230 kJ/mol and -90.122 ± 1.248 kJ/mol for ZINC1044382792 and ZINC1433610862, respectively. Hence, this comprehensive investigation identifies ZINC1433610862 and ZINC1044382792 as prospective hits, representing promising leads for targeting LIMK2 in cancer therapeutics.Communicated by Ramaswamy H. Sarma.

2.
Comput Biol Chem ; 107: 107942, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37673012

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major threat to global health, with the emergence of multi-drug and extensively drug-resistant strains posing a serious challenge. Thereby, understanding the molecular basis of MTB virulence and disease pathogenesis is critical for developing effective therapeutic strategies. Targeting proteins involved in central metabolism has been recognized as a promising therapeutic approach to combat MTB. In this regard, the enzyme AckA of the acetate metabolic pathway which produces acetate from acetyl phosphate, is an important drug target for various pathogenic organisms. Therefore, this study aimed to identify potential AckA inhibitors through in silico methods, including molecular modeling, molecular dynamics simulation (MDS), and high-throughput virtual screening (HTVS) followed by ADMETox, MMGBSA, Density Functional Theory (DFT) calculations. HTVS of one million compounds from the ZINC database against AckA resulted in the top five hits (ZINC82048449, ZINC1219737510, ZINC1771921358, ZINC119699567, and ZINC1427100376) with better binding affinity and optimal binding free energy. MDS studies on complexes revealed that key residues, Asn195, Asp266, Phe267, Gly314, and Asn318 played a significant role in stable interactions of the top-ranked compounds to AckA. These outcomes provide insights into the optimal binding of the leads to inhibit the acetate pathway and aid in the rational design of novel therapeutic agents. Thus, the identified leads may act as promising compounds for targeting AckA and may serve as a potential therapeutic modality for treating TB. Our findings offer valuable insights into the inhibition of the acetate pathway, while also serving as a blueprint for rational drug design. The identified leads hold promise as compelling compounds for targeting AckA, thereby offering a potential therapeutic avenue for tackling TB. Thus, our study uncovers a pathway toward promising TB therapeutics by elucidating AckA inhibitors. By leveraging in silico methodologies, potent compounds that hold the potential to thwart AckA's role in MTB's acetate pathway have been unveiled. This breakthrough fosters optimism in the quest for novel and effective TB treatments, addressing a global health challenge with renewed vigor.


Subject(s)
Mycobacterium tuberculosis , Antitubercular Agents/chemistry , Acetate Kinase/metabolism , Molecular Dynamics Simulation , Acetates
SELECTION OF CITATIONS
SEARCH DETAIL
...