Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535383

ABSTRACT

Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can inhibit protein translation by depurinating rRNA. Most plant RIPs are synthesized with a leader sequence that sequesters the proteins to a cell compartment away from the host ribosomes. However, several rice RIPs lack these signal peptides suggesting they reside in the cytosol in close proximity to the plant ribosomes. This paper aims to elucidate the physiological function of two nucleocytoplasmic RIPs from rice, in particular, the type 1 RIP referred to as OsRIP1 and a presumed type 3 RIP called nuRIP. Transgenic rice lines overexpressing these RIPs were constructed and studied for developmental effects resulting from this overexpression under greenhouse conditions. In addition, the performance of transgenic seedlings in response to drought, salt, abscisic acid and methyl jasmonate treatment was investigated. Results suggest that both RIPs can affect methyl jasmonate mediated stress responses.


Subject(s)
Oryza/physiology , Plant Proteins/metabolism , Saporins/metabolism , Stress, Physiological , Abscisic Acid/chemistry , Acetates/metabolism , Cyclopentanes/metabolism , Cytosol/metabolism , Gene Expression Regulation, Plant , Green Fluorescent Proteins/metabolism , Oxylipins/metabolism , Phenotype , Plants, Genetically Modified , Protein Biosynthesis , Ribosomes/metabolism , Salts , Seedlings/metabolism
2.
Front Plant Sci ; 11: 185, 2020.
Article in English | MEDLINE | ID: mdl-32194594

ABSTRACT

The Euonymus lectin (EUL) family is a unique group of carbohydrate-binding proteins that is omnipresent in plants. Sequences encoding EUL-related lectins have been retrieved from all completely sequenced plant genomes. The rice (Oryza sativa) genome contains 5 functional EUL genes referred to as OsEULS2, OsEULS3, OsEULD1a, OsEULD1b, and OsEULD2. In this study we focused on the tissue specific expression, stress inducibility and subcellular localization of the rice EULs. Even though the EUL domain sequence is highly conserved among the rice EULs (at least 80% sequence similarity) different biotic and abiotic stress treatments yielded unique responses for the different EULs. Transcript levels for OsEULs were differentially affected by drought and salt stress, ABA treatment, pathogen infection or insect infestation. Analysis of promoter activity revealed differential expression and tissue specificity for the 5 OsEUL genes, with most expression observed in the vascular system of roots and shoots, as well as in the root tips and seeds. At cell level, all OsEULs are located in the nucleus whereas OsEULD1b and OsEULD2 also locate to the cytoplasm. This paper contributes to the functional characterization of the EULs and provides insight in the biological importance of this family of proteins for rice.

3.
Phytochemistry ; 170: 112190, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31731237

ABSTRACT

Rice is the most important staple food in the world, but rice production is challenged by several biotic stress factors like viruses, bacteria, fungi and pest insects. One of the most notorious pest insects is Nilaparvata lugens, commonly known as the brown planthopper, which feeds on rice phloem sap and can cause serious damage to rice fields. In order to protect themselves, plants express a wide array of defense proteins such as ribosome-inactivating proteins (RIPs). This study shows that the expression of 'OsRIP1' is highly induced in rice plants infested with N. lugens, with transcript levels more than 100-fold upregulated in infested plants compared to non-infested plants. Furthermore, recombinant OsRIP1 was toxic for brown planthoppers when administered through liquid artificial diet. OsRIP1 inactivated insect ribosomes in vitro, suggesting that its toxicity relates to the enzymatic activity of OsRIP1. Over-expression of OsRIP1 in transgenic rice plants did not affect the performance of insects reared on these plants, most likely due to insufficient concentrations of OsRIP1 in the phloem. The data obtained in this research indicate that OsRIP1 can play a role in plant defense against herbivorous insects.


Subject(s)
Hemiptera/drug effects , Oryza/chemistry , Phytochemicals/pharmacology , Saporins/metabolism , Animals , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Saporins/chemistry , Saporins/isolation & purification
4.
Arch Insect Biochem Physiol ; 103(3): e21644, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31702082

ABSTRACT

Nilaparvata lugens is one of the most notorious pest insects of cultured rice, and outbreaks of N. lugens cause high economic losses each year. While pest control by chemical pesticides is still the standard procedure for treating N. lugens infections, excessive use of these insecticides has led to the emergence of resistant strains and high pesticide residues in plants for human consumption and the environment. Therefore, novel and environment-friendly pest control strategies are needed. In previous studies, selenium was shown to protect selenium-accumulating plants from biotic stress. However, studies on nonaccumulator (crop) plants are lacking. In this study, rice plants (Oryza sativa, Nipponbare) were treated with sodium selenate by seed priming and foliar spray and then infested with N. lugens. Brown planthoppers feeding on these plants showed increased mortality compared to those feeding on control plants. Treatment of the plants with sodium selenate did not affect the enzymes involved in the biosynthesis of the plant stress hormones jasmonic acid and salicylic acid, suggesting that the observed insect mortality cannot be attributed to the activation of these hormonal plant defenses. Feeding assays using an artificial diet supplemented with sodium selenate revealed direct toxicity toward N. lugens. With a low concentration of 6.5 ± 1.5 µM sodium selenate, half of the insects were killed after 3 days. In summary, sodium selenate treatment of plants can be used as a potential alternative pest management strategy to protect rice against N. lugens infestation through direct toxicity.


Subject(s)
Antioxidants/pharmacology , Hemiptera/drug effects , Oryza/parasitology , Selenic Acid/pharmacology , Animals , Cyclopentanes , Gene Expression Regulation, Plant , Insecticides/pharmacology , Oxylipins , Salicylic Acid
5.
Front Plant Sci ; 10: 116, 2019.
Article in English | MEDLINE | ID: mdl-30804974

ABSTRACT

Soil salinity is one of the important abiotic stress factors that affect rice productivity and quality. Research with several dicotyledonous plants indicated that the detrimental effects associated with salinity stress can (partly) be overcome by the external application of antioxidative substances. For instance, sodium selenate (Na2SeO4) significantly improved the growth and productivity of several crops under various abiotic stress conditions. At present there is no report describing the impact of Na2SeO4 on salinity stressed cereals such as rice. Rice cultivation is threatened by increasing salinity stress, and in future this problem will further be aggravated by global warming and sea level rise, impacting coastal areas. The current study reports on the effect of Na2SeO4 in alleviating salinity stress in rice plants. The optimal concentration of Na2SeO4 and the most efficient mode of selenium application were investigated. Selenium, sodium, and potassium contents in leaves were determined. Antioxidant enzyme activities as well as proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) concentrations were analyzed. In addition, the transcript levels for OsNHX1, an important Na+/H+ antiporter, were quantified. Treatment of 2-week-old rice plants under 150 mM NaCl stress with 6 mg l-1 Na2SeO4 improved the total biomass. A significantly higher biomass was observed for the plants that received Na2SeO4 by a combination of seed priming and foliar spray compared to the individual treatments. The Na2SeO4 application enhanced the activity of antioxidant enzymes (SOD, APX, CAT, and GSH-Px), increased the proline content, and reduced H2O2 and MDA concentrations in plants under NaCl stress. These biochemical changes were accompanied by increased transcript levels for OsNHX1 resulting in a higher K+/Na+ ratio in the rice plants under NaCl stress. The results suggest that Na2SeO4 treatment alleviates the adverse effect of salinity on rice plant growth through enhancing the antioxidant defense system and increase of OsNHX1 transcript levels.

6.
3 Biotech ; 6(2): 148, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28330220

ABSTRACT

The present work demonstrates the participation of polyamines (PAs) to improve direct regeneration and Agrobacterium-mediated transformation in soybean half-seeds. The inclusion of PAs to culture medium along with optimal plant growth regulators (PGRs) enhanced shoot induction [98.3 %; 4.44 µM N6-benzyladenine (BA) and 103.27 µM spermidine] and elongation [90.0 %; 1.45 µM gibberellic acid (GA3) and 49.42 µM spermine]. The polyamine putrescine (62.08 µM) alone greatly enriched root induction (96.3 %). The influence of PAs on transformed plant production was assessed by comparing optimized protocol (comprising PAs and PGRs) with a regeneration system involving only PGRs. Plant transformation was performed in half-seeds of cultivar DS 97-12 using strain EHA105 harboring pCAMBIA1301. Transgene expression and integration was confirmed by GUS staining, PCR, and Southern hybridization. The transformed explants/materials successively cultured on co-cultivation (BA and spermidine), shoot induction (BA and spermidine), shoot elongation (GA3 and spermine), and rooting medium (putrescine) showed enhanced transformation efficiency (29.3 %) compared with its counterparts (14.6 %) with respective PGR alone [BA, GA3, or indole-3-butyric acid (IBA)]. Overall findings of the study suggest that involvement of PAs improved T-DNA transfer during co-cultivation, and delivered most suitable condition for efficient regeneration/survival, which led to enhanced transformation efficiency in soybean.

7.
Plant Cell Rep ; 34(10): 1835-48, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26152769

ABSTRACT

KEY MESSAGE: An efficient, reproducible, and genotype-independent in planta transformation has been developed for sugarcane using setts as explant. Traditional Agrobacterium-mediated genetic transformation and in vitro regeneration of sugarcane is a complex and time-consuming process. Development of an efficient Agrobacterium-mediated transformation protocol, which can produce a large number of transgenic plants in short duration is advantageous. Hence, in the present investigation, we developed a tissue culture-independent in planta genetic transformation system for sugarcane using setts collected from 6-month-old sugarcane plants. The sugarcane setts (nodal cuttings) were infected with three Agrobacterium tumefaciens strains harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA(®). Several parameters influencing the in planta transformation such as A. tumefaciens strains, acetosyringone, sonication and exposure to vacuum pressure, have been evaluated. The putatively transformed sugarcane plants were screened by GUS histochemical assay. Sugarcane setts were pricked and sonicated for 6 min and vacuum infiltered for 2 min at 500 mmHg in A. tumefaciens C58C1 suspension containing 100 µM acetosyringone, 0.1 % Silwett L-77 showed the highest transformation efficiency of 29.6 % (with var. Co 62175). The three-stage selection process completely eliminated the chimeric transgenic sugarcane plants. Among the five sugarcane varieties evaluated using the standardized protocol, var. Co 6907 showed the maximum transformation efficiency (32.6 %). The in planta transformation protocol described here is applicable to transfer the economically important genes into different varieties of sugarcane in relatively short time.


Subject(s)
Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Saccharum/genetics , Transformation, Genetic/genetics
8.
Appl Biochem Biotechnol ; 175(4): 2266-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25480345

ABSTRACT

Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.


Subject(s)
Cotyledon/genetics , Gene Transfer Techniques , Glycine max/genetics , Plants, Genetically Modified , Plasmids/chemistry , Transformation, Genetic , Agrobacterium tumefaciens/genetics , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , India , Kanamycin Kinase/genetics , Kanamycin Kinase/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plasmids/metabolism , Seedlings/genetics , Sonication , Vacuum
9.
Transgenic Res ; 24(2): 237-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25260337

ABSTRACT

Cold is a major stress that limits the quality and productivity of economically important crops such as tomato (Solanum lycopersicum L.). Generating a cold-stress-tolerant tomato by expressing cold-inducible genes would increase agricultural strategies. Rare cold-inducible 2a (RCI2A) is expressed in Arabidopsis, but its molecular function during cold stress is not fully understood. Here we ectopically expressed Arabidopsis RCI2A in transgenic tomato to evaluate tolerance to cold stress without altering agronomic traits. Biochemical and physiological study demonstrated that expression of RCI2A in transgenic tomato enhanced the activity of peroxidase and ascorbate peroxidase (APX) and reduced the accumulation of H2O2, alleviated lipid peroxidation, increased the accumulation of chlorophyll, reduced chilling-induced membrane damage, retained relative water content and enhanced cold tolerance. A motif search revealed that the motifs of photosystem II (PSII) phosphoproteins PsbJ and PsbH and reaction-center proteins PsbL and PsbK were common to cold-inducible RCI2A and peroxidase proteins RCI3A, tomato peroxidase (TPX1), TPX2, tomato ascorbate peroxidase (APX1), and horseradish peroxidase (HRP-c). In addition to membrane protection, RCI2A may cross talk with PSII-associated proteins or peroxidase family enzymes in response to cold stress. Our findings may strengthen the understanding of the molecular function of RCI2A in cold-stress tolerance. RCI2A could be used to improve abiotic stress tolerance in agronomic crops.


Subject(s)
Arabidopsis Proteins/genetics , Heat-Shock Proteins/genetics , Membrane Proteins/genetics , Plants, Genetically Modified/genetics , Solanum lycopersicum/genetics , Stress, Physiological/genetics , Arabidopsis/genetics , Cold Temperature , Ectopic Gene Expression , Gene Expression Regulation, Plant , Solanum lycopersicum/physiology , Plants, Genetically Modified/physiology
10.
Appl Biochem Biotechnol ; 172(4): 1763-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24258793

ABSTRACT

Soybean oil contains high levels of tocopherols which are an important source of vitamin E in human diet. The conversion of γ- to α-tocopherol catalyzed by γ-tocopherol methyltransferase (γ-TMT) is found to be the rate limiting factor in soybean which influences the tocopherol composition. Using Agrobacterium-mediated transformation, we overexpressed the γ-TMT gene of Perilla frutescens under the control of the seed-specific promoter vicillin in cultivar Pusa 16. Transgene integration and expression was confirmed in five independently transformed GUS positive soybean plants by polymerase chain reaction (PCR), Southern hybridization, and reverse transcriptase-PCR (RT-PCR). High-performance liquid chromatography (HPLC) analysis showed that overexpression of Pf-γ-TMT resulted in efficient conversion of γ-tocopherol to α-tocopherol and concomitant increase in seed α-tocopherol content in RT-PCR positive plants. The protocol was successfully applied to three more cultivars PK 416, Gujarat soybean 1, and VL soya 1 in which seeds of transformed plants showed elevated level of α-tocopherol than wild-type seeds.


Subject(s)
Gene Expression Regulation, Plant/genetics , Glycine max/enzymology , Glycine max/metabolism , Methyltransferases/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Tocopherols/metabolism , Methyltransferases/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Glycine max/genetics
11.
Protoplasma ; 251(3): 591-601, 2014 May.
Article in English | MEDLINE | ID: mdl-24150424

ABSTRACT

An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.


Subject(s)
DNA, Plant/genetics , Jatropha/genetics , Gene Transfer Techniques , Genetic Vectors , Jatropha/growth & development , Plants, Genetically Modified , Transformation, Genetic
12.
Indian J Exp Biol ; 51(10): 849-59, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24266110

ABSTRACT

Majority of the Indian soybean cultivars are recalcitrant to tissue culture regeneration. The present communication reports the development of somatic embryogenesis in a liquid culture medium from immature cotyledons of G. max. Following induction with 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthalene acetic acid (NAA), the number of somatic embryos and percentage of explants that responded were higher with 45.24 microM 2,4-D. The proliferation of somatic embryos for three successive cycles was achieved in 22.62 microM 2,4-D. Histodifferentiation of somatic embryos under NAA (10.74 microM) indicated that better embryo development and maturation was achieved without any growth regulator. The amino acids such as L-glutamine favoured the somatic embryo induction and histodifferentiation at 20 and 30 mM respectively, where as L-asparagine at 10 mM concentration enhanced the somatic embryo proliferation. In addition, somatic embryos that were desiccated (air-drying method) for 5 days showed better germination (40.88%). The Indian soybean cultivars also showed strict genotypic influence and cv. Pusa 16 was emerged as a best responding cultivar for somatic embryo induction with 74.42% of response.


Subject(s)
Glycine max/embryology , Plant Somatic Embryogenesis Techniques/methods , Acclimatization/drug effects , Acclimatization/physiology , Amino Acids/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cotyledon/drug effects , Cotyledon/growth & development , Cotyledon/physiology , Desiccation , Germination/drug effects , Germination/physiology , Plant Growth Regulators/pharmacology , Glycine max/drug effects , Glycine max/growth & development , Glycine max/physiology
13.
Appl Biochem Biotechnol ; 171(2): 450-68, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23852797

ABSTRACT

An efficient and reproducible in planta transformation method was developed for brinjal using seed as an explant. The brinjal seeds were infected with Agrobacterium tumefaciens EHA 105 harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA®. Several parameters influencing the in planta seed transformation such as pre-culture duration, acetosyringone concentration, surfactants, duration of sonication, vacuum pressure and vacuum duration have been evaluated. The putatively transformed (T 0) brinjal plants were screened by GUS histochemical analysis. Among the different combinations and concentrations tested, when the 18-h pre-cultured brinjal seeds were sonicated for 20 min and vacuum infiltered for 3 min at 500 mm of Hg in Agrobacterium suspension containing 100 µM acetosyringone, 0.2 % Silwett L-77 favoured the Agrobacterium infection and showed maximum transformation efficiency. Among the five brinjal varieties evaluated, Arka Samhitha showed maximum transformation efficiency at 45.66 %. The transgene was successfully transmitted to progeny plants (T 1) which was evidenced by GUS histochemical analysis, polymerase chain reaction and Southern hybridisation. The in planta protocol developed in the present study would be beneficial to transfer the economically and nutritionally important genes into different varieties of brinjal, and the transgenic brinjal plants can be produced in less time (approximately 27 days).


Subject(s)
Agrobacterium/genetics , Genetic Engineering/methods , Seeds/genetics , Solanum melongena/genetics , Transformation, Genetic , Acetophenones/pharmacology , Coculture Techniques , Genotype , Germination , Glucuronidase/genetics , Glucuronidase/metabolism , Seeds/growth & development , Solanum melongena/drug effects , Solanum melongena/enzymology , Solanum melongena/growth & development , Sonication , Surface-Active Agents/pharmacology , Time Factors , Transformation, Genetic/drug effects , Transgenes/genetics , Vacuum
14.
Plant Cell Rep ; 32(10): 1557-74, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23749098

ABSTRACT

KEY MESSAGE: An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant. Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA(®) and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.


Subject(s)
Agrobacterium tumefaciens , Genetic Engineering/methods , Saccharum/genetics , Seeds/genetics , Acetophenones/chemistry , DNA, Plant/genetics , Gene Transfer Techniques , Genes, Reporter , Genotype , Plants, Genetically Modified/genetics , Sonication , Surface-Active Agents/chemistry , Transformation, Genetic
15.
Planta ; 236(6): 1909-25, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22936305

ABSTRACT

Salinity and fungal diseases are the two significant constraints limiting soybean productivity. In order to address these problems, we have transformed soybean cv. Pusa 16 via somatic embryogenesis with salinity induced and apoplastically secreted pathogenesis-related tobacco osmotin (Tbosm) gene using Agrobacterium-mediated genetic transformation. Integration of Tbosm in randomly selected five GUS assay-positive independently transformed soybean plants was confirmed by polymerase chain reaction (PCR) and Southern hybridization. Reverse transcriptase-PCR (RT-PCR) and Western blotting confirmed that the Tbosm was expressed in three of the five transformed soybean plants. Further the Western blotting revealed that the truncated osmotin protein accumulated more in apoplastic fluid. The transformed (T(1)) soybean plants survived up to 200 mM NaCl, whereas non-transformed (NT) plants could withstand till 100 mM and perished at 150 mM NaCl. The biochemical analysis revealed the T(1) soybean plants accumulated higher amount of proline, chlorophyll, APX, CAT, SOD, DHAR, MDHAR, and RWC than NT plants. Leaf gas exchange measurements revealed that T(1) soybean plants maintained higher net photosynthetic rate, CO(2) assimilation, and stomatal conductance than NT plants. The three T(1) soybean plants expressing the osmotin gene also showed resistance against three important fungal pathogens of soybean--Microsphaera diffusa, Septoria glycines and Phakopsora pachyrhizi. The T(1) soybean plants produced 32-35 soybean pods/plant containing 10.3-12.0 g of seeds at 200 mM NaCl, whereas NT plant produced 28.6 soybean pods containing 9.6 g of seeds at 100 mM NaCl. The present investigation clearly shows that expression of Tbosm enhances salinity tolerance and fungal disease resistance in transformed soybean plants.


Subject(s)
Antifungal Agents/metabolism , Glycine max/physiology , Nicotiana/genetics , Plant Diseases/immunology , Plant Proteins/metabolism , Ascomycota/physiology , Basidiomycota/physiology , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Disease Resistance , Gene Expression Regulation, Plant , Germination , Photosynthesis , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Plant Proteins/genetics , Plant Somatic Embryogenesis Techniques , Plant Stomata/genetics , Plant Stomata/immunology , Plant Stomata/physiology , Plant Transpiration , Plants, Genetically Modified , Proline/metabolism , Salinity , Salt Tolerance , Seeds/genetics , Seeds/immunology , Seeds/physiology , Sodium Chloride/pharmacology , Glycine max/genetics , Glycine max/microbiology , Stress, Physiological , Nicotiana/metabolism
16.
Plant Cell Rep ; 30(3): 425-36, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21212957

ABSTRACT

A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 µM acetosyringone followed by co-cultivation in 50 µM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana.


Subject(s)
Agrobacterium tumefaciens/genetics , Gene Transfer Techniques , Musa/genetics , Sonication , Acetophenones/chemistry , Cinnamates/pharmacology , DNA, Plant/genetics , Genes, Reporter , Genetic Vectors , Hygromycin B/analogs & derivatives , Hygromycin B/pharmacology , Plants, Genetically Modified/genetics , Tissue Culture Techniques , Transformation, Genetic , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL
...