Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(11): 2860-2874, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817436

ABSTRACT

Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties. Within both graphitic allotropes, oxidation results in heightened hydrophilicity and the incorporation of oxygen functionalities. These factors are of great significance for drug delivery purposes. The successful oxidation and interaction of quercetin with both graphene (GO) and CNDs (oxCNDs) have been confirmed through a range of characterization techniques, including FTIR, Raman, and XPS spectroscopy, as well as XRD and AFM. In vitro anticancer tests were conducted on both normal (NIH/3T3) and glioblastoma (U87) cells. The results revealed that the bonding of quercetin with GO and oxCNDs enhances its cytotoxic effect on cancer cells. GO-Quercetin and oxCNDs-Quercetin induced G0/G1 cell cycle arrest in U87 cells, whereas oxCNDs caused G2/M arrest, indicating a distinct mode of action. In long-term survival studies, cancer cells exhibited significantly lower viability than normal cells at all corresponding doses of GO-Quercetin and oxCNDs-Quercetin. This work leads us to conclude that the conjugation of quercetin to GO and oxCNDs shows promising potential for targeted anticancer activity. However, further research at the molecular level is necessary to substantiate our preliminary findings.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38668171

ABSTRACT

Non-toxic carbon-based hybrid nanomaterials based on carbon nanodisks were synthesized and assessed as novel antibacterial agents. Specifically, acid-treated carbon nanodisks (oxCNDs), as a safe alternative material to graphene oxide, interacted through covalent and non-covalent bonding with guanidinylated hyperbranched polyethyleneimine derivatives (GPEI5K and GPEI25K), affording the oxCNDs@GPEI5K and oxCNDs@GPEI25K hybrids. Their physico-chemical characterization confirmed the successful and homogenous attachment of GPEIs on the surface of oxCNDs, which, due to the presence of guanidinium groups, offered them improved aqueous stability. Moreover, the antibacterial activity of oxCNDs@GPEIs was evaluated against Gram-negative E. coli and Gram-positive S. aureus bacteria. It was found that both hybrids exhibited enhanced antibacterial activity, with oxCNDs@GPEI5K being more active than oxCNDs@GPEI25K. Their MIC and MBC values were found to be much lower than those of oxCNDs, revealing that the GPEI attachment endowed the hybrids with enhanced antibacterial properties. These improved properties were attributed to the polycationic character of the oxCNDs@GPEIs, which enables effective interaction with the bacterial cytoplasmic membrane and cell walls, leading to cell envelope damage, and eventually cell lysis. Finally, oxCNDs@GPEIs showed minimal cytotoxicity on mammalian cells, indicating that these hybrid nanomaterials have great potential to be used as safe and efficient antibacterial agents.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36839082

ABSTRACT

Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via H2SO4 and HNO3 has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.

4.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35808131

ABSTRACT

In this work, we demonstrated the ability of the cyanobacterium Pseudanabaena/Limnothrix sp. to produce ultra-small silver nanoparticlesin the forms of metallic silver (Ag0) and silver oxides (AgxOy) via a facile green synthetic process. The biological compounds in the cyanobacterial cellular extract acted both as reducing agents for silver ions and functional stabilizing agents for the silver nanoparticles. Furthermore, the antibacterical activity of the as-synthesized nanoparticles against Gram-negative Escherichia coli and Gram-positive Corynebacterium glutamicum bacterial cells was evaluated. The experimental results revealed a remarkable bactericidal activity of the nanoparticles that was both time-dependent and dose-dependent. In addition to their excellent bactericidal properties, the developed nanoparticles can be used as nanosupports in various environmental, biological, and medical applications.

5.
ACS Appl Mater Interfaces ; 14(22): 26204-26215, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35608556

ABSTRACT

Graphene, a two-dimensional single-layer carbon allotrope, has attracted tremendous scientific interest due to its outstanding physicochemical properties. Its monatomic thickness, high specific surface area, and chemical stability render it an ideal building block for the development of well-ordered layered nanostructures with tailored properties. Herein, biohybrid graphene-based layer-by-layer structures are prepared by means of conventional and surfactant-assisted Langmuir-Schaefer layer deposition techniques, whereby cytochrome c molecules are accommodated within ordered layers of graphene oxide. The biocatalytic activity of the as-developed nanobio-architectures toward the enzymatic oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and decolorization of pinacyanol chloride is tested. The results show that the multilayer structures exhibit high biocatalytic activity and stability in the absence of surfactant molecules during the deposition of the monolayers.


Subject(s)
Graphite , Nanostructures , Cytochromes c , Graphite/chemistry , Nanostructures/chemistry , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...