Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 229: 119432, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36495852

ABSTRACT

Faucet aerators that form aerated water jets generate aerosols, which can constitute a risk of infection if the water is contaminated, particularly for vulnerable individuals near the sink. In this study, we characterize the size and trajectory of water droplets produced from an aerated jet. The detected particle diameter ranged from 3 to 150µm. The concentration of droplets in the air varied from near-zero to a maximum of 2×1011particles/m3, depending on the location relative to the jet. We found four relevant categories of droplets based on their trajectories following their emission at the jet's free surface: particles with inertia high enough to escape the immediate vicinity of the jet (category 1), particles moving towards the jet (category 2), particles drawn into the aerator, which only included particles with a diameter smaller than 50µm (category 3), and particles with a near-vertical trajectory (category 4). Tracing category 1 particles to their generation location on the water interface shows a higher emission rate near the aerator. Finally, we employ a numerical model to compute the subsequent trajectories of droplets detected at the limits of the sampled domain. We find that particles whose diameter is smaller than 55µm completely dry and become airborne. Larger droplets deposit within a radius of 7cm around the jet, assuming a surface is located 20cm below the aerator tip. These results increase the fundamental understanding of the emission mechanisms of droplets in aerated jets and their fate in the sink environment.


Subject(s)
Water , Humans , Aerosols
2.
Sci Total Environ ; 775: 145690, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33631571

ABSTRACT

Faucet aerators have been linked to multiple opportunistic pathogen outbreaks in hospital, especially Pseudomonas aeruginosa, their complex structure promoting biofilm development. The importance of bacteria aerosolization by faucet aerators and their incidence on the risk of infection remain to be established. In this study, ten different types of aerators varying in complexity, flow rates and type of flow were evaluated in a controlled experimental setup to determine the production of aerosols and the level of contamination. The aerosol particle number density and size distribution were assessed using a particle spectrometer. The bacterial load was quantified with a 14-stage cascade impactor, where aerosol particles were captured and separated by size, then analysed by culture and flow cytometry. The water was seeded with Pseudomonas fluorescens as a bacterial indicator. Aerosol particle size and mean mass distribution varied depending on the aerator model. Devices without aeration or with laminar flow produced the lowest number and mass of aerosol particles when measured with spectrometry. Models with aeration displayed wide differences in their potential production of aerosol particles. A new aerator with a low flow, no air inlet in its structure, and a spray stream produced 12 to 395 times fewer aerosol particles containing bacteria. However, the impact of low flow on biofilm development and incorporation of pathogens should be further investigated. Repeated use of aerators resulted in fouling which increased the quantity of bacteria released through aerosol particles. An in-depth mechanical cleaning including complete dismantling of the aerator was required to recover initial performances. Aerators should be selected to minimize aerosol production, considering the ease of maintenance and the main water usage at each sink. Low flow aerators produced a lower number of contaminated aerosol particles when new but may be more susceptible to fouling and quickly lose their initial advantage.


Subject(s)
Disease Outbreaks , Pseudomonas aeruginosa , Aerosols , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...