Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 11: 784, 2020.
Article in English | MEDLINE | ID: mdl-32411116

ABSTRACT

Nitrogen metabolism in the rhizosphere microbiome plays an important role in mediating plant nutrition, particularly under low inputs of mineral fertilizers. However, there is relatively little mechanistic information about which genes and metabolic pathways are induced by rhizosphere bacterial strains to utilize diverse nitrogen substrates. Here we investigate nitrogen substrate utilization in three taxonomically diverse bacterial strains previously isolated from Arabidopsis roots. The three strains represent taxa that are consistently detected as core members of the plant microbiome: Pseudomonas, Streptomyces, and Rhizobium. We use phenotype microarrays to determine the nitrogen substrate preferences of these strains, and compare the experimental results vs. computational simulations of genome-scale metabolic network models obtained with EnsembleFBA. Results show that all three strains exhibit generalistic nitrogen substrate preferences, with substrate utilization being well predicted by EnsembleFBA. Using label-free quantitative proteomics, we document hundreds of proteins in each strain that exhibit differential abundance values following cultivation on five different nitrogen sources: ammonium, glutamate, lysine, serine, and urea. The proteomic response to these nitrogen sources was strongly strain-dependent, with lysine nutrition eliciting widespread protein-level changes in Pseudomonas sp. Root9, whereas Rhizobium sp. Root491 showed relatively stable proteome composition across different nitrogen sources. Our results give new protein-level information about the specific transporters and enzymes induced by diverse rhizosphere bacterial strains to utilize organic nitrogen substrates.

2.
Cell Mol Life Sci ; 77(3): 415-432, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31768606

ABSTRACT

Heterogeneity is universally observed in all natural systems and across multiple scales. Understanding population heterogeneity is an intriguing and attractive topic of research in different disciplines, including microbiology and immunology. Microbes and mammalian immune cells present obviously rather different system-specific biological features. Nevertheless, as typically occurs in science, similar methods can be used to study both types of cells. This is particularly true for mathematical modeling, in which key features of a system are translated into algorithms to challenge our mechanistic understanding of the underlying biology. In this review, we first present a broad overview of the experimental developments that allowed observing heterogeneity at the single cell level. We then highlight how this "data revolution" requires the parallel advancement of algorithms and computing infrastructure for data processing and analysis, and finally present representative examples of computational models of population heterogeneity, from microbial communities to immune response in cells.


Subject(s)
Immunity/physiology , Microbiota/physiology , Algorithms , Animals , Computer Simulation , Humans , Models, Theoretical
3.
Sci Rep ; 9(1): 16657, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723177

ABSTRACT

The Q-cycle mechanism entering the electron and proton transport chain in oxygenic photosynthesis is an example of how biological processes can be efficiently investigated with elementary microscopic models. Here we address the problem of energy transport across the cellular membrane from an open quantum system theoretical perspective. We model the cytochrome [Formula: see text] protein complex under cyclic electron flow conditions starting from a simplified kinetic model, which is hereby revisited in terms of a Markovian quantum master equation formulation and spin-boson Hamiltonian treatment. We apply this model to theoretically demonstrate an optimal thermodynamic efficiency of the Q-cycle around ambient and physiologically relevant temperature conditions. Furthermore, we determine the quantum yield of this complex biochemical process after setting the electrochemical potentials to values well established in the literature. The present work suggests that the theory of quantum open systems can successfully push forward our theoretical understanding of complex biological systems working close to the quantum/classical boundary.

4.
Planta ; 250(3): 1005-1010, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31290030

ABSTRACT

In her 1929 essay A Room of One's Own, Virginia Wolf famously wrote, "One cannot think well, love well, sleep well, if one has not dined well." While this popular quote is perhaps not the most inspiring, it is an elegant reminder that food and the cultural practices surrounding food are paramount for our wellbeing. However, in our quest to feed a growing global population, we have become focused on increasing the production of a few staple crops and overlooked hundreds or thousands of locally and regionally important crops that may represent the future of agriculture. The growing interest in identifying and developing promising new crops and novel food sources prompted the 1st Cologne Conference on Food for Future, which took place between the 5 and 7th of September 2018 at the Rautenstrauch-Joest museum in Cologne, Germany. It offered a unique platform for researchers, journalists, politicians, and entrepreneurs to present and discuss their views, visions, and concerns on the topics of Food Security. This interdisciplinary meeting acted as a stage to cover diverse aspects of crop science, food research, and food production in the context of global food and nutrition security. Three sessions accommodated scientific contributions on the topics of "Orphan Crops", "Functional food", and "Innovative food sources and production systems", and two public events (a public lecture and a plenary discussion) engaged the citizens with informative discussions on relevant and mediatic topics. With delegates from Africa, Europe, and the United States of America, the conference aimed at building bridges between different communities through scientific exchange.


Subject(s)
Crops, Agricultural , Food Supply , Congresses as Topic , Crop Production , Food , Forecasting
5.
mSystems ; 4(1)2019.
Article in English | MEDLINE | ID: mdl-30944873

ABSTRACT

Microbes have adapted to greatly variable environments in order to survive both short-term perturbations and permanent changes. A classical and yet still actively studied example of adaptation to dynamic environments is the diauxic shift of Escherichia coli, in which cells grow on glucose until its exhaustion and then transition to using previously secreted acetate. Here we tested different hypotheses concerning the nature of this transition by using dynamic metabolic modeling. To reach this goal, we developed an open source modeling framework integrating dynamic models (ordinary differential equation systems) with structural models (metabolic networks) which can take into account the behavior of multiple subpopulations and smooth flux transitions between time points. We used this framework to model the diauxic shift, first with a single E. coli model whose metabolic state represents the overall population average and then with a community of two subpopulations, each growing exclusively on one carbon source (glucose or acetate). After introduction of an environment-dependent transition function that determined the balance between subpopulations, our model generated predictions that are in strong agreement with published data. Our results thus support recent experimental evidence that diauxie, rather than a coordinated metabolic shift, would be the emergent pattern of individual cells differentiating for optimal growth on different substrates. This work offers a new perspective on the use of dynamic metabolic modeling to investigate population heterogeneity dynamics. The proposed approach can easily be applied to other biological systems composed of metabolically distinct, interconverting subpopulations and could be extended to include single-cell-level stochasticity. IMPORTANCE Escherichia coli diauxie is a fundamental example of metabolic adaptation, a phenomenon that is not yet completely understood. Further insight into this process can be achieved by integrating experimental and computational modeling methods. We present a dynamic metabolic modeling approach that captures diauxie as an emergent property of subpopulation dynamics in E. coli monocultures. Without fine-tuning the parameters of the E. coli core metabolic model, we achieved good agreement with published data. Our results suggest that single-organism metabolic models can only approximate the average metabolic state of a population, therefore offering a new perspective on the use of such modeling approaches. The open source modeling framework that we provide can be applied to model general subpopulation systems in more-complex environments and can be extended to include single-cell-level stochasticity.

6.
New Phytol ; 222(2): 1043-1053, 2019 04.
Article in English | MEDLINE | ID: mdl-30565261

ABSTRACT

To obtain insights into the dynamics of nutrient exchange in arbuscular mycorrhizal (AM) symbiosis, we modelled mathematically the two-membrane system at the plant-fungus interface and simulated its dynamics. In computational cell biology experiments, the full range of nutrient transport pathways was tested for their ability to exchange phosphorus (P)/carbon (C)/nitrogen (N) sources. As a result, we obtained a thermodynamically justified, independent and comprehensive model of the dynamics of the nutrient exchange at the plant-fungus contact zone. The predicted optimal transporter network coincides with the transporter set independently confirmed in wet-laboratory experiments previously, indicating that all essential transporter types have been discovered. The thermodynamic analyses suggest that phosphate is released from the fungus via proton-coupled phosphate transporters rather than anion channels. Optimal transport pathways, such as cation channels or proton-coupled symporters, shuttle nutrients together with a positive charge across the membranes. Only in exceptional cases does electroneutral transport via diffusion facilitators appear to be plausible. The thermodynamic models presented here can be generalized and adapted to other forms of mycorrhiza and open the door for future studies combining wet-laboratory experiments with computational simulations to obtain a deeper understanding of the investigated phenomena.


Subject(s)
Mycorrhizae/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Symbiosis , Biological Transport , Cell Membrane/metabolism , Models, Biological , Thermodynamics
7.
J R Soc Interface ; 15(142)2018 05.
Article in English | MEDLINE | ID: mdl-29720454

ABSTRACT

Global warming exposes plants to severe heat stress, with consequent crop yield reduction. Organisms exposed to high temperature stresses typically protect themselves with a heat shock response (HSR), where accumulation of unfolded proteins initiates the synthesis of heat shock proteins through the heat shock transcription factor HSF1. While the molecular mechanisms are qualitatively well characterized, our quantitative understanding of the underlying dynamics is still very limited. Here, we study the dynamics of HSR in the photosynthetic model organism Chlamydomonas reinhardtii with a data-driven mathematical model of HSR. We based our dynamical model mostly on mass action kinetics, with a few nonlinear terms. The model was parametrized and validated by several independent datasets obtained from the literature. We demonstrate that HSR quantitatively and significantly differs if an increase in temperature of the same magnitude occurs abruptly, as often applied under laboratory conditions, or gradually, which would rather be expected under natural conditions. In contrast to rapid temperature increases, under gradual changes only negligible amounts of misfolded proteins accumulate, indicating that the HSR of C. reinhardtii efficiently avoids the accumulation of misfolded proteins under conditions most likely to prevail in nature. The mathematical model we developed is a flexible tool to simulate the HSR to different conditions and complements the current experimental approaches.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Heat-Shock Response/physiology , Hot Temperature , Models, Biological , Heat Shock Transcription Factors/metabolism , Kinetics , Plant Proteins/metabolism
8.
Biochem Soc Trans ; 46(2): 403-412, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29540507

ABSTRACT

Understanding microbial ecosystems means unlocking the path toward a deeper knowledge of the fundamental mechanisms of life. Engineered microbial communities are also extremely relevant to tackling some of today's grand societal challenges. Advanced meta-omics experimental techniques provide crucial insights into microbial communities, but have been so far mostly used for descriptive, exploratory approaches to answer the initial 'who is there?' QUESTION: An ecosystem is a complex network of dynamic spatio-temporal interactions among organisms as well as between organisms and the environment. Mathematical models with their abstraction capability are essential to capture the underlying phenomena and connect the different scales at which these systems act. Differential equation models and constraint-based stoichiometric models are deterministic approaches that can successfully provide a macroscopic description of the outcome from microscopic behaviors. In this mini-review, we present classical and recent applications of these modeling methods and illustrate the potential of their integration. Indeed, approaches that can capture multiple scales are needed in order to understand emergent patterns in ecosystems and their dynamics regulated by different spatio-temporal phenomena. We finally discuss promising examples of methods proposing the integration of differential equations with constraint-based stoichiometric models and argue that more work is needed in this direction.


Subject(s)
Ecosystem , Microbiota , Models, Biological , Metagenomics
9.
Front Plant Sci ; 8: 1617, 2017.
Article in English | MEDLINE | ID: mdl-28974956

ABSTRACT

In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years, a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are, however, largely unknown. In this review, we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon.

10.
J Exp Bot ; 68(11): 2667-2681, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28830099

ABSTRACT

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drastically different timescales from picoseconds to hours. Efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes, including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project, AccliPhot, placing the results in a wider context. The review also highlights the applicability of photosynthetic organisms for industry, particularly with regards to the cultivation of microalgae. It intends to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology.


Subject(s)
Acclimatization , Photosynthesis/physiology , Plants , Chlorophyta , Models, Biological , Systems Biology
11.
J Bacteriol ; 199(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28533216

ABSTRACT

The last few years have seen the advancement of high-throughput experimental techniques that have produced an extraordinary amount of data. Bioinformatics and statistical analyses have become instrumental to interpreting the information coming from, e.g., sequencing data and often motivate further targeted experiments. The broad discipline of "computational biology" extends far beyond the well-established field of bioinformatics, but it is our impression that more theoretical methods such as the use of mathematical models are not yet as well integrated into the research studying microbial interactions. The empirical complexity of microbial communities presents challenges that are difficult to address with in vivo/in vitro approaches alone, and with microbiology developing from a qualitative to a quantitative science, we see stronger opportunities arising for interdisciplinary projects integrating theoretical approaches with experiments. Indeed, the addition of in silico experiments, i.e., computational simulations, has a discovery potential that is, unfortunately, still largely underutilized and unrecognized by the scientific community. This minireview provides an overview of mathematical models of natural ecosystems and emphasizes that one critical point in the development of a theoretical description of a microbial community is the choice of problem scale. Since this choice is mostly dictated by the biological question to be addressed, in order to employ theoretical models fully and successfully it is vital to implement an interdisciplinary view at the conceptual stages of the experimental design.


Subject(s)
Microbial Consortia/physiology , Microbial Interactions , Models, Theoretical , Computational Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...