Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(21): 14864-14890, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36270633

ABSTRACT

A series of benzyloxy and phenoxy derivatives of the adenosine receptor agonists N6-cyclopentyl adenosine (CPA) and N6-cyclopentyl 5'-N-ethylcarboxamidoadenosine (CP-NECA) were synthesized, and their potency and selectivity were assessed. We observed that the most potent were the compounds with a halogen in the meta position on the aromatic ring of the benzyloxy- or phenoxycyclopentyl substituent. In general, the NECA-based compounds displayed greater A1R selectivity than the adenosine-based compounds, with N6-2-(3-bromobenzyloxy)cyclopentyl-NECA and N6-2-(3-methoxyphenoxy)cyclopentyl-NECA showing ∼1500-fold improved A1R selectivity compared to NECA. In addition, we quantified the compounds' affinity and kinetics of binding at both human and rat A1R using a NanoBRET binding assay and found that the halogen substituent in the benzyloxy- or phenoxycyclopentyl moiety seems to confer high affinity for the A1R. Molecular modeling studies suggested a hydrophobic subpocket as contributing to the A1R selectivity displayed. We believe that the identified selective potent A1R agonists are valuable tool compounds for adenosine receptor research.


Subject(s)
Purinergic P1 Receptor Agonists , Receptors, Purinergic P1 , Animals , Humans , Rats , Adenosine/chemistry , Adenosine-5'-(N-ethylcarboxamide) , Halogens , Structure-Activity Relationship
2.
J Med Chem ; 65(19): 13305-13327, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36173355

ABSTRACT

Drugs targeting adenosine receptors (AR) can provide treatment for diseases. We report the identification of 7-(phenylamino)-pyrazolo[3,4-c]pyridines L2-L10, A15, and A17 as low-micromolar to low-nanomolar A1R/A3R dual antagonists, with 3-phenyl-5-cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine (A17) displaying the highest affinity at both receptors with a long residence time of binding, as determined using a NanoBRET-based assay. Two binding orientations of A17 produce stable complexes inside the orthosteric binding area of A1R in molecular dynamics (MD) simulations, and we selected the most plausible orientation based on the agreement with alanine mutagenesis supported by affinity experiments. Interestingly, for drug design purposes, the mutation of L2506.51 to alanine increased the binding affinity of A17 at A1R. We explored the structure-activity relationships against A1R using alchemical binding free energy calculations with the thermodynamic integration coupled with the MD simulation (TI/MD) method, applied on the whole G-protein-coupled receptor-membrane system, which showed a good agreement (r = 0.73) between calculated and experimental relative binding free energies.


Subject(s)
Adenosine A3 Receptor Antagonists , Receptor, Adenosine A3 , Adenosine A3 Receptor Antagonists/chemistry , Alanine , Mutagenesis , Purinergic P1 Receptor Antagonists/chemistry , Pyridines/chemistry , Receptor, Adenosine A1/genetics , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A3/metabolism , Structure-Activity Relationship
3.
Nat Commun ; 13(1): 4150, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851064

ABSTRACT

The development of therapeutic agonists for G protein-coupled receptors (GPCRs) is hampered by the propensity of GPCRs to couple to multiple intracellular signalling pathways. This promiscuous coupling leads to numerous downstream cellular effects, some of which are therapeutically undesirable. This is especially the case for adenosine A1 receptors (A1Rs) whose clinical potential is undermined by the sedation and cardiorespiratory depression caused by conventional agonists. We have discovered that the A1R-selective agonist, benzyloxy-cyclopentyladenosine (BnOCPA), is a potent and powerful analgesic but does not cause sedation, bradycardia, hypotension or respiratory depression. This unprecedented discrimination between native A1Rs arises from BnOCPA's unique and exquisitely selective activation of Gob among the six Gαi/o subtypes, and in the absence of ß-arrestin recruitment. BnOCPA thus demonstrates a highly-specific Gα-selective activation of the native A1R, sheds new light on GPCR signalling, and reveals new possibilities for the development of novel therapeutics based on the far-reaching concept of selective Gα agonism.


Subject(s)
Analgesia , Depression , Adenosine/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P1
4.
ACS Med Chem Lett ; 13(6): 923-934, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35707146

ABSTRACT

Here we describe the design and synthesis of pyrazolo[3,4-d]pyridazines as adenosine receptor (AR) ligands. We demonstrate that the introduction of a 3-phenyl group, together with a 7-benzylamino and 1-methyl group at the pyrazolopyridazine scaffold, generated the antagonist compound 10b, which displayed 21 nM affinity and a residence time of ∼60 min, for the human A1R, 55 nM affinity and a residence time of ∼73 min, for the human A3R and 1.7 µΜ affinity for the human A2BR while not being toxic. Strikingly, the 2-methyl analog of 10b, 15b, had no significant affinity. Docking calculations and molecular dynamics simulations of the ligands inside the orthosteric binding area suggested that the 2-methyl group in 15b hinders the formation of hydrogen bonding interactions with N6.55 which are considered critical for the stabilization inside the orthosteric binding cavity. We, therefore, demonstrate that 10a is a novel scaffold for the development of high affinity AR ligands. From the mutagenesis experiments the biggest effect was observed for the Y2717.46A mutation which caused an ∼10-fold reduction in the binding affinity of 10b.

5.
Methods Cell Biol ; 166: 1-14, 2021.
Article in English | MEDLINE | ID: mdl-34752328

ABSTRACT

The importance of receptor-ligand binding kinetics has often been overlooked during drug development, however, over the past decade it has become increasingly clear that a better understanding of the kinetic parameters is crucial for fully evaluating pharmacological effects of a drug. One technique enabling us to measure the real-time kinetics of receptor-ligand interactions in live cells is NanoBRET, which is a bioluminescence resonance energy transfer (BRET)-based assay that uses Nano luciferase. The assay described here allows the measurement of kinetic parameters of a fluorescent ligand and an unlabeled ligand binding to the same place at the receptor, as well as monitoring the effects of another compound like an allosteric modulator on the ligand binding.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques , Bioluminescence Resonance Energy Transfer Techniques/methods , HEK293 Cells , Humans , Kinetics , Ligands , Luciferases/metabolism , Protein Binding
6.
Biophys J ; 118(8): 1861-1875, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32246901

ABSTRACT

Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.


Subject(s)
Fluorescence Resonance Energy Transfer , Membrane Proteins , Cell Membrane/metabolism , Dimerization , Humans , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...