Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(13)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38573851

ABSTRACT

Computer simulation has long been an essential partner of ultrafast experiments, allowing the assignment of microscopic mechanistic detail to low-dimensional spectroscopic data. However, the ability of theory to make a priori predictions of ultrafast experimental results is relatively untested. Herein, as a part of a community challenge, we attempt to predict the signal of an upcoming ultrafast photochemical experiment using state-of-the-art theory in the context of preexisting experimental data. Specifically, we employ ab initio Ehrenfest with collapse to a block mixed quantum-classical simulations to describe the real-time evolution of the electrons and nuclei of cyclobutanone following excitation to the 3s Rydberg state. The gas-phase ultrafast electron diffraction (GUED) signal is simulated for direct comparison to an upcoming experiment at the Stanford Linear Accelerator Laboratory. Following initial ring-opening, dissociation via two distinct channels is observed: the C3 dissociation channel, producing cyclopropane and CO, and the C2 channel, producing CH2CO and C2H4. Direct calculations of the GUED signal indicate how the ring-opened intermediate, the C2 products, and the C3 products can be discriminated in the GUED signal. We also report an a priori analysis of anticipated errors in our predictions: without knowledge of the experimental result, which features of the spectrum do we feel confident we have predicted correctly, and which might we have wrong?

2.
Phys Chem Chem Phys ; 26(21): 15130-15142, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38525924

ABSTRACT

High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase trans-1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states. The gradually evolving spectral features can be accurately and feasibly simulated within nuclear ensemble methods and interpreted with the population analysis.

3.
Nat Chem ; 14(10): 1126-1132, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35953643

ABSTRACT

Directly contrasting ultrafast excited-state dynamics in the gas and liquid phases is crucial to understanding the influence of complex environments. Previous studies have often relied on different spectroscopic observables, rendering direct comparisons challenging. Here, we apply extreme-ultraviolet time-resolved photoelectron spectroscopy to both gaseous and liquid cis-stilbene, revealing the coupled electronic and nuclear dynamics that underlie its isomerization. Our measurements track the excited-state wave packets from excitation along the complete reaction path to the final products. We observe coherent excited-state vibrational dynamics in both phases of matter that persist to the final products, enabling the characterization of the branching space of the S1-S0 conical intersection. We observe a systematic lengthening of the relaxation timescales in the liquid phase and a red shift of the measured excited-state frequencies that is most pronounced for the complex reaction coordinate. These results characterize in detail the influence of the liquid environment on both electronic and structural dynamics during a complete photochemical transformation.

4.
J Chem Phys ; 156(14): 144303, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35428398

ABSTRACT

The transport of free electrons in a water environment is still poorly understood. We show that additional insight can be brought about by investigating fragmentation patterns of finite-size particles upon electron impact ionization. We have developed a composite protocol aiming to simulate fragmentation of water clusters by electrons with kinetic energies in the range of up to 100 eV. The ionization events for atomistically described molecular clusters are identified by a kinetic Monte Carlo procedure. We subsequently model the fragmentation with classical molecular dynamics simulations, calibrated by non-adiabatic quantum mechanics/molecular mechanics simulations of the ionization process. We consider one-electron ionizations, energy transfer via electronic excitation events, elastic scattering, and also the autoionization events through intermolecular Coulombic decay. The simulations reveal that larger water clusters are often ionized repeatedly, which is the cause of substantial fragmentation. After losing most of its energy, low-energy electrons further contribute to fragmentation by electronic excitations. The simultaneous measurement of cluster size distribution before and after the ionization represents a sensitive measure of the energy transferred into the system by an incident electron.


Subject(s)
Electrons , Water , Computer Simulation , Energy Transfer , Monte Carlo Method
5.
Phys Chem Chem Phys ; 23(26): 14340-14351, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34169306

ABSTRACT

We investigate the photodissociation dynamics of the C-Cl bond in chloroalkanes CH3Cl, n-C3H7Cl, i-C3H7Cl, n-C5H11Cl, combining velocity map imaging (VMI) experiment and direct ab initio dynamical simulations. The Cl fragment kinetic energy distributions (KEDs) from the VMI experiment exhibit a single peak with maximum close to 0.8 eV, irrespective of the alkyl chain length and C-Cl bond position. In contrary to CH3Cl, where less than 10% of the available energy is deposited into the internal excitation of the CH3 fragment, for all higher chloroalkanes around 40% to 60% of the available energy goes into the alkyl fragment excitation. We apply the classical hard spheres and spectator model to explain the energy partitioning, and compare the classical approach with direct ab initio dynamics simulations. The alkyl chain appears to be a soft, energy absorbing unit. We further investigate the role of the spin-orbit effects on the excitation and dynamics. Combining our experimental data with theory allows us to derive the probability of the direct absorption into the triplet electronic state as well as the probabilities for intersystem crossing. The results indicate an increasing direct absorption into the triplet state with increasing alkyl chain length.

6.
Phys Chem Chem Phys ; 23(13): 7682-7695, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33496289

ABSTRACT

The combination of supersonic expansions with IR action spectroscopy techniques is the basis of many successful approaches to study cluster structure and dynamics. The effects of temperature and temperature evolution are important with regard to both the cluster synthesis and the cluster dynamics upon IR excitation. In the past the combination of the sodium doping technique with IR excitation enhanced near threshold photoionization has been successfully applied to study neutral, especially water clusters. In this work we follow an overall examination approach for inspecting the interplay of cluster temperature and cluster structure in the initial cooling process and in the IR excitation induced heating of the clusters. In molecular simulations, we study the temperature dependent photoionization spectra of the sodium doped clusters and the evaporative cooling process by water molecule ejection at the cluster surface. We present a comprehensive analysis that provides constraints for the temperature evolution from the nozzle to cluster detection in the mass spectrometer. We attribute the IR action effect to the strong temperature dependence of sodium solvation in the IR excited clusters and we discuss the effects of geometry changes during the IR multi-photon absorption process with regard to application prospects of the method.

7.
J Phys Chem A ; 124(50): 10457-10471, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33283519

ABSTRACT

The photochemistry of bilirubin has been extensively studied due to its importance in the phototherapy of hyperbilirubinemia. In the present work, we investigated the ultrafast photodynamics of a bilirubin dipyrrinone subunit, vinylneoxanthobilirubic acid methyl ester. The photoisomerization and photocyclization reactions of its (E) and (Z) isomers were studied using femtosecond transient absorption spectroscopy and by multireference electronic structure theory, where the nonadiabatic dynamics was modeled with a Landau-Zener surface hopping technique. The following picture has emerged from the combined theoretical and experimental approach. Upon excitation, dipyrrinone undergoes a very fast vibrational relaxation, followed by an internal conversion on a picosecond time scale. The internal conversion leads either to photoisomerization or regeneration of the starting material. Further relaxation dynamics on the order of tens of picoseconds was observed in the ground state. The nonadiabatic simulations revealed a strong conformational control of the photodynamics. The ultrafast formation of a cyclic photochemical product from a less-populated conformer of the studied subunit was predicted by our calculations. We discuss the relevance of the present finding for the photochemistry of native bilirubin. The work has also pointed to the limits of semiclassical nonadiabatic simulations for simulating longer photochemical processes, probably due to the zero-point leakage issue.


Subject(s)
Bilirubin/chemistry , Photochemical Processes , Spectrum Analysis/methods , Thermodynamics , Models, Molecular , Molecular Conformation , Quantum Theory
8.
J Chem Theory Comput ; 16(9): 5809-5820, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32687703

ABSTRACT

Ab initio excited state photodynamical simulations have entered the mainstream in the past two decades, bringing techniques of various sophistication and computational requirements for the description of nonadiabatic transitions. We explore in this work the performance of the recently reformulated Landau-Zener surface hopping (LZSH) approach and extend it for the simultaneous treatment of internal conversion and intersystem crossing events. We studied photochemical reactions of four model molecules (cyclopropanone, methaniminium cation, cytosine, and thiophene). The calculated quantities are generally in excellent agreement with the corresponding fewest switches surface hopping simulations. Furthermore, the algorithm proved to be significantly more stable and more computationally efficient. LZSH also puts fewer constraints on the electronic structure theory as the nonadiabatic couplings are not needed. We argue that the accuracy of photodynamical simulations is in practice dominated by the electronic structure theory, and it is, therefore, legitimate to use the simplest and the most efficient technique for the treatment of nonadiabatic transitions.

9.
Phys Chem Chem Phys ; 21(37): 20764-20769, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31513195

ABSTRACT

Long-range intermolecular forces are able to steer polar molecules submerged in superfluid helium nanodroplets into highly polar metastable configurations. We demonstrate that the presence of such special structures can be identified, in a direct and determinative way, by electrostatic deflection of the doped nanodroplet beam. The measurement also establishes the structures' electric dipole moments. In consequence, the introduced approach is complementary to spectroscopic studies of low-temperature molecular assembly reactions. It is enabled by the fact that within the cold superfluid matrix the molecular dipoles become nearly completely oriented by the applied electric field. As a result, the massive (tens of thousands of helium atoms) nanodroplets undergo significant deflections. The method is illustrated here by an application to dimers and trimers of dimethyl sulfoxide (DMSO) molecules. We interpret the experimental results with ab initio theory, mapping the potential energy surface of DMSO complexes and simulating their low temperature aggregation dynamics.

10.
Faraday Discuss ; 212(0): 307-330, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30259011

ABSTRACT

Photodynamical simulations are increasingly used to explore photochemical mechanisms and interpret laser experiments. The vast majority of ab initio excited-state simulations are performed within semiclassical, trajectory-based approaches. Apart from underlying electronic-structure theory, the reliability of simulations is controlled by a selection of initial conditions for the classical trajectories. We discuss appropriate choices of initial conditions for simulations of different experimental arrangements: dynamics initiated by continuum-wave (CW) laser fields or triggered by ultrashort laser pulses. We introduce a new technique, CW-sampling, to treat the former case, based on the ideas of importance sampling, combined with the quantum thermostat approach based on the Generalized Langevin Equation (GLE) that allows for efficient sampling of both position and momentum space. The CW-sampling is particularly important for photodynamical processes initiated by absorption at the tail of the UV absorption spectrum. We also emphasize the importance of non-Condon effects for the dynamics. We demonstrate the performance of our approach on the photodissociation of the CF2Cl2 molecule (Freon CFC-12). A quantitative agreement with the experimental data is achieved with the use of empirical correlation energy correction (CEC) factor on top of FOMO-CASCI potential energy surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...