Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(27): 12042-12050, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38934904

ABSTRACT

Compound-specific isotope analysis (CSIA) is an established tool to track the in situ transformation of organic chemicals at contaminated sites. In this work, we evaluated the potential of multi-element CSIA to assess biodegradation of 2,3-dichloroaniline (2,3-DCA), which is a major industrial feedstock. Using controlled laboratory experiments, we determined, for the first time, negligible carbon (<0.5‰) and hydrogen (<10‰) isotope fractionation and a significant inverse nitrogen isotope fractionation (>10‰) during aerobic 2,3-DCA biodegradation by a mixed enrichment culture. The tentative identification of a glutamate conjugate of 2,3-DCA as a reaction intermediate indicates that the initial multistep enzymatic reaction may be rate-limiting. The formation of the glutamate adduct would increase the bond energy at the N atom, thus likely explaining the observed inverse N isotope fractionation. The corresponding nitrogen enrichment factor was +6.8 ± 0.6‰. This value was applied to investigate the in situ 2,3-DCA biodegradation at a contaminated site where the carbon and nitrogen isotope signatures from field samples suggested similar aerobic processes by native microorganisms. Under the assumption of the applicability of the Rayleigh model in a pilot wetland treating contaminated groundwater, the extent of biodegradation was estimated to be up to 80-90%. This study proposes multi-element CSIA as a novel application to study 2,3-DCA fate in groundwater and surface water and provides insights into biodegradation pathways.


Subject(s)
Biodegradation, Environmental , Aniline Compounds/metabolism , Carbon Isotopes , Nitrogen Isotopes , Aerobiosis , Nitrogen/metabolism
2.
Anal Chem ; 95(17): 6801-6809, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37078684

ABSTRACT

Compound-specific isotope analysis (CSIA) is an established tool to study the fate of legacy groundwater contaminants but is only emerging for nonconventional contaminants, e.g., nitro- and amino-substituted chlorobenzenes that are widely used as industrial feedstock and the target of this work. To date, CSIA of the target compound groups used special combustion interfaces and the potential matrix interferences in environmental samples has not been assessed. We validated CSIA methods for δ13C, δ2H, and δ15N of four analytes from each chemical group and developed a solid-phase extraction (SPE) method to minimize matrix interferences during preconcentration of complex aqueous samples. The SPE recovery was >80% and the method quantification limits of SPE-CSIA for δ13C, δ2H, and δ15N were 0.03-0.57, 1.3-2.7, and 3.4-10.2 µM aqueous-phase concentrations, respectively, using 2 L of spiked MQ water. The SPE-CSIA procedure showed negligible isotope fractionation for δ13C (≤0.5‰), δ15N (≤0.5‰), and δ2H (≤5‰ for nitroaromatics and ≤10‰ for aminoaromatics). In addition, solvent evaporation, water sample storage up to 7 months, and SPE extract storage for 1.5 years did not change analytes' δ13C signatures beyond ±0.5‰. However, to avoid significant δ2H and δ15N fractionation of aminoaromatics, cartridge breakthrough should be avoided and SPE preconcentration must be conducted at pH > pKa + 2. Application of the method at a contaminated site showed excellent precision, at ≤0.3‰ for C and N, and ≤1.5‰ for H. The methods validated here now allow the use of multielement CSIA to track the environmental fate of nitro- and amino-substituted chlorobenzenes in complex aqueous samples.

3.
Sci Total Environ ; 850: 157898, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35952872

ABSTRACT

Polar organic chemical integrative sampler (POCIS) contains sorbent, which is typically enclosed between two polyethersulfones (PES) membranes. A significant PES uptake is reported for many contaminants, yet, aqueous concentration is mainly correlated with the sorbent uptake using first-order kinetics. Under high PES sorption, the first-order kinetics often provide erroneous sampling rate for the sorbent phase due to increased membrane resistance. This work evaluated the uptake of four high PES sorbing chemicals, i.e., three Cl- and CH3-substituted nitrobenzenes and one chlorinated aniline using POCIS and the potential of a single-phase PES sampler using laboratory experiments. POCIS calibration results demonstrated that both sorbent and membrane had similar affinity for the target compounds. A rapid PES sorption occurred in the earlier days (<7 days) followed by a gradual increase in the PES phase concentration (equilibrium not achieved after 60 days). Especially, the membrane was the primary sink for 3,4-dichloroaniline and 3,4-dichloronitrobenzene for up to 14 and 31 days, respectively. On the other hand, the single-phase PES sampler showed similar mass uptake as POCIS and reached equilibrium within 19 days under static condition, indicating its potential suitability in the equilibrium regime. PES-water partition coefficient of the target compounds was between 1.2 and 6.5 L/g. Finally, we present a poly-parameter linear-free energy relationship (pp-LFER) using published data to predict the PES-water partition coefficients. The pp-LFER models showed moderate predictability as indicated by R2adj values between 0.7 and 0.9 for both internal and external data set consisting of a wide range of hydrophobic and hydrophilic compounds (-0.1 ≤ logKOW ≤ 7.4). The proposed pp-LFER model can be used to screen high PES-sorbing chemicals to increase the reliability and accuracy of aqueous concentration prediction from POCIS sampling and to select the most appropriate sampling approach for new compounds.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Aniline Compounds , Environmental Monitoring/methods , Nitrobenzenes , Polymers , Reproducibility of Results , Sulfones , Water/chemistry , Water Pollutants, Chemical/analysis
4.
Water Res ; 203: 117519, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34391022

ABSTRACT

1H-benzotriazole is part of a larger family of benzotriazoles, which are widely used as lubricants, polymer stabilizers, corrosion inhibitors, and anti-icing fluid components. It is frequently detected in urban runoff, wastewater, and receiving aquatic environments. 1H-benzotriazole is typically resistant to biodegradation and hydrolysis, but can be transformed via direct photolysis and photoinduced mechanisms. In this study, the phototransformation mechanisms of 1H-benzotriazole were characterized using multi-element compound-specific isotope analysis (CSIA). The kinetics, transformation products, and isotope fractionation results altogether revealed that 1H-benzotriazole direct photolysis and indirect photolysis induced by OH radicals involved two alternative pathways. In indirect photolysis, aromatic hydroxylation dominated and was associated with small carbon (εC = -0.65 ± 0.03‰), moderate hydrogen (εH = -21.6‰), and negligible nitrogen isotope enrichment factors and led to hydroxylated forms of benzotriazole. In direct photolysis of 1H-benzotriazole, significant nitrogen (εN = -8.4 ± 0.4 to -4.2 ± 0.3‰) and carbon (εC = -4.3 ± 0.2 to -1.64 ± 0.04‰) isotope enrichment factors indicated an initial N-N bond cleavage followed by nitrogen elimination with a C-N bond cleavage. The results of this study highlight the potential for multi-element CSIA application to track 1H-benzotriazole degradation in aquatic environments.


Subject(s)
Carbon , Hydrogen , Biodegradation, Environmental , Carbon Isotopes/analysis , Chemical Fractionation , Nitrogen , Nitrogen Isotopes , Triazoles
5.
J Chromatogr A ; 1621: 461083, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32317103

ABSTRACT

A rapid and sensitive direct immersion solid-phase microextraction (SPME) technique for the analysis of seven chloro (Cl-) and nitro (NO2-) substituted anilines, toluenes, and nitrobenzenes from small volume (1.5 mL) aqueous samples was optimized for gas chromatography using Design of Experiments (DoE). Screening of the SPME factors was performed by a fractional factorial DoE, and the optimization of influential factors was achieved with a central composite multi-response surface DoE. Extraction time, pre-SPME agitation speed, extraction temperature, and desorption temperature were identified as significant factors and their values were set using a desirability function that maximized the extraction of the seven target analytes. Extraction time and agitation speed showed significant interactions for most analytes (α = 0.05). The relative standard deviations (RSDs) for within-day and between-day analyses were below 8%, suggesting that the method was repeatable and reproducible. The obtained limits of detection were in the low µg/L range (1-10) using a Flame Ionization Detector, far below what is needed for industrial contaminated sites (usually >1 mg/L). The optimized SPME method increased the analyte concentration up to 2-3 orders of magnitude compared with direct GC injection. The optimized SPME method was applied to two groundwater samples from a contaminated site in which the concentrations of three of the target analytes were ranged from 0.06 to 9.42 mg/L with RSDs <11%. When the concentrations of the target analytes in the sample matrix were higher than 0.5 mg/L, a competition for the SPME extraction sites was observed where analytes with higher affinity for the fiber material replaced the analytes with lower affinity. As a result, dilution of highly contaminated samples is recommended. This study provided for the first time an analytical method for the quantification of frequently co-occurring contaminants from the chloro­ and nitro- substituted aniline, toluene, and nitrobenzene families.


Subject(s)
Hydrocarbons, Aromatic/analysis , Nitro Compounds/analysis , Solid Phase Microextraction/methods , Analysis of Variance , Calibration , Groundwater/chemistry , Limit of Detection , Models, Theoretical , Reproducibility of Results , Salts/chemistry , Temperature , Time Factors , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...