Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Catheter Cardiovasc Interv ; 93(5): 963-970, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30430723

ABSTRACT

OBJECTIVES: To evaluate the in vivo feasibility of aortography with one accurately timed diastolic low-volume contrast injection for quantitative assessment of aortic regurgitation (AR) post transcatheter aortic valve replacement (TAVR). BACKGROUND: With the rise of a minimalistic approach for TAVR, aortography (re)emerges as a pragmatic tool for AR assessment. In a mock circulation system, we have validated the accuracy of a single diastolic injection triggered by electrocardiogram (ECG) with low-contrast volume. METHODS: Two-phase experiment: first, a series of aortograms were performed in a porcine model, with 8 mL of contrast using the synchronized (SYNC) and the conventional non-synchronized (NS) injections. In a second phase, we developed a model of AR by inserting partially unsheathed Wallstents of 6-10 mm of diameter across the pig's aortic valve, performing SYNC injections with 8 mL of contrast and NS injections with 8 mL and 15 mL (rate: 20 mL/sec). Respective accuracies of SYNC vs. NS were assessed using Passing-Bablock regression. An angiography core laboratory performed quantitative AR assessment with videodensitometry (VD-AR). RESULTS: The SYNC injections produced higher opacification of the aortic root compared with NS injections (P = 0.04 for density). In the second phase, a regression line for predicting VD-AR based on the SYNC injection resulted in a lower intercept and a slope closer to the line of identity (y = 11.9 + 0.79x, P < 0.001, r2 = 0.94) with the NS-8 mL than with the NS-15 mL injection (y = 26.5 + 0.55x, P < 0.001, r2 = 0.81). CONCLUSION: Synchronized diastolic injection with low contrast volume produced denser images in the aortic root and more accurate than the conventional injection; thus, may be an appealing alternative for assessment of AR post TAVR.


Subject(s)
Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve/diagnostic imaging , Aortography , Contrast Media/administration & dosage , Hemodynamics , Iopamidol/administration & dosage , Animals , Aortic Valve/physiopathology , Aortic Valve Insufficiency/physiopathology , Diastole , Disease Models, Animal , Electrocardiography , Feasibility Studies , Female , Heart Rate , Injections , Predictive Value of Tests , Reproducibility of Results , Sus scrofa , Time Factors
2.
EuroIntervention ; 13(13): 1527-1535, 2018 01 20.
Article in English | MEDLINE | ID: mdl-28994656

ABSTRACT

AIMS: Videodensitometric assessment of aortography provides a periprocedural quantitation of prosthetic valve regurgitation (PVR) after transcatheter aortic valve implantation. We sought to compare the videodensitometric parameters of PVR severity to the regurgitation fraction (RF) in a controlled in vitro setting. METHODS AND RESULTS: In a mock circulation system, a transcatheter balloon-expandable valve inserted at the aortic valve position was gradually deformed to induce different grades of paravalvular leakage and the RF was measured with a transonic flow probe. Contrast aortography was performed and the following videodensitometric parameters were generated: left ventricle aortic regurgitation (LV-AR), LV outflow tract AR (LVOT-AR), quantitative regurgitation assessment (qRA) index, relative maximum density (relative max), and maximum upslope of the LV time-density curve. The correlation was substantial between videodensitometric parameters (LV-AR, LVOT-AR, qRA index, relative max, and maximum upslope) and RF (r2=0.96, 0.96, 0.93, 0.87, and 0.93; p<0.001 for all). LV-AR (region of interest [ROI]=entire LV) and LVOT-AR (ROI=LVOT) were not different (p=0.51) and were strongly correlated (r2=0.99) with a mean difference of 1.92% (95% limits of agreement: ±2.83). The correlations of LV-AR and LVOT-AR with RF were stronger when more than one cardiac cycle was included in the analysis (one cycle: r2=0.85 and r2=0.83; four cycles: r2=0.96 and r2=0.96, for LV-AR and LVOT-AR, respectively). Including more cycles beyond four did not improve accuracy. CONCLUSIONS: Quantitative assessment of PVR by videodensitometry of aortograms strongly correlates with the actual RF in a controlled in vitro setting. Accuracy is improved by including more than one cardiac cycle in the analysis.


Subject(s)
Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve/surgery , Aortography/methods , Heart Valve Prosthesis/adverse effects , Hemodynamics , Radiographic Image Interpretation, Computer-Assisted/methods , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/instrumentation , Aortic Valve/diagnostic imaging , Aortic Valve/physiopathology , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/physiopathology , Densitometry , Humans , Models, Anatomic , Models, Cardiovascular , Predictive Value of Tests , Prosthesis Design , Severity of Illness Index
3.
EuroIntervention ; 13(11): 1288-1295, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-28691911

ABSTRACT

AIMS: In the minimalist transcatheter aortic valve implantation (TAVI) era, the usage of transoesophageal echocardiography has become restricted. Conversely, aortography has gained clinical ground in quantifying prosthetic valve regurgitation (PVR) during the procedure. In a mock circulation system, we sought to compare the contrast volume required and the accuracy of aortographic videodensitometric PVR assessment using a synchronised diastolic and standard (non-synchronised) injection aortography. METHODS AND RESULTS: Synchronised diastolic injection triggered by the signal stemming from the mock circulation was compared with standard non-synchronised injection. A transcatheter heart valve was implanted and was deformed step by step by advancing a screw perpendicularly to the cage of the valve in order to create increasing PVR. Quantitative measurement of PVR was derived from time-density curves of both a reference area (aortic root) and a region of interest (left ventricle) developed by a videodensitometric software. The volume of contrast required for the synchronised diastolic injection was significantly less than in the non-synchronised injection (8.1 [7.9-8.5] ml vs. 19.4 [19.2-19.9] ml, p<0.001). The correlation between the two methods was substantial (Spearman's coefficient rho ranging from 0.991 to 0.968). Intraobserver intra-class correlation coefficient for both methods of injection was 0.999 (95% CI: 0.996-1.000) for the synchronised diastolic and 0.999 (95% CI: 0.996-1.000) for the non-synchronised injection group. The mean difference in the rating was 0.17% and limits of agreement were ±1.64% for both groups. CONCLUSIONS: A short synchronised diastolic injection enables contrast volume reduction during aortography without compromising the accuracy of the quantitative assessment of PVR using videodensitometry.


Subject(s)
Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve/diagnostic imaging , Aortography/methods , Contrast Media/administration & dosage , Models, Anatomic , Models, Cardiovascular , Aortic Valve/physiopathology , Aortic Valve Insufficiency/physiopathology , Diastole , Humans , Injections , Observer Variation , Radiographic Image Interpretation, Computer-Assisted , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...