Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Rheumatology (Oxford) ; 62(4): 1669-1676, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36040165

ABSTRACT

OBJECTIVES: To present an unbiased approach to identify positional transcript single nucleotide polymorphisms (SNPs) of osteoarthritis (OA) risk loci by allelic expression imbalance (AEI) analyses using RNA sequencing of articular cartilage and subchondral bone from OA patients. METHODS: RNA sequencing from 65 articular cartilage and 24 subchondral bone from OA patients was used for AEI analysis. AEI was determined for all genes present in the 100 regions reported by the genome-wide association studies (GWAS) catalog that were also expressed in cartilage or bone. The count fraction of the alternative allele (φ) was calculated for each heterozygous individual with the risk SNP or with the SNP in linkage disequilibrium (LD) with it (r2 > 0.6). Furthermore, a meta-analysis was performed to generate a meta-φ (null hypothesis median φ = 0.49) and P-value for each SNP. RESULTS: We identified 30 transcript SNPs (28 in cartilage and two in subchondral bone) subject to AEI in 29 genes. Notably, 10 transcript SNPs were located in genes not previously reported in the GWAS catalog, including two long intergenic non-coding RNAs (lincRNAs), MALAT1 (meta-φ = 0.54, FDR = 1.7×10-4) and ILF3-DT (meta-φ = 0.6, FDR = 1.75×10-5). Moreover, 12 drugs were interacting with seven genes displaying AEI, of which seven drugs have been already approved. CONCLUSIONS: By prioritizing proxy transcript SNPs that mark AEI in cartilage and/or subchondral bone at loci harbouring GWAS signals, we present an unbiased approach to identify the most likely functional OA risk-SNP and gene. We identified 10 new potential OA risk genes ready for further translation towards underlying biological mechanisms.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Cartilage, Articular/metabolism , Genome-Wide Association Study , Osteoarthritis/genetics , Osteoarthritis/metabolism , Alleles
2.
Stem Cell Res Ther ; 13(1): 434, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056373

ABSTRACT

Although mesenchymal stromal cells (MSCs) from primary tissues have been successfully applied in the clinic, their expansion capabilities are limited and results are variable. MSCs derived from human-induced pluripotent stem cells (hiMSCs) are expected to overcome these limitations and serve as a reproducible and sustainable cell source. We have explored characteristics and therapeutic potential of hiMSCs in comparison to hBMSCs. RNA sequencing confirmed high resemblance, with average Pearson correlation of 0.88 and Jaccard similarity index of 0.99, and similar to hBMSCs the hiMSCs released extracellular vesicles with in vitro immunomodulatory properties. Potency assay with TNFα and IFNγ demonstrated an increase in well-known immunomodulatory genes such as IDO1, CXCL8/IL8, and HLA-DRA which was also highlighted by enhanced secretion in the media. Notably, expression of 125 genes increased more than 1000-fold. These genes were predicted to be regulated by NFΚB signaling, known to play a central role in immune response. Altogether, our data qualify hiMSCs as a promising source for cell therapy and/or cell-based therapeutic products. Additionally, the herewith generated database will add to our understanding of the mode of action of regenerative cell-based therapies and could be used to identify relevant potency markers.


Subject(s)
Extracellular Vesicles , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Cell- and Tissue-Based Therapy , Extracellular Vesicles/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Secretome
3.
Rheumatology (Oxford) ; 62(1): 360-372, 2022 12 23.
Article in English | MEDLINE | ID: mdl-35412619

ABSTRACT

OBJECTIVES: To study the mechanism by which the readthrough mutation in TNFRSF11B, encoding osteoprotegerin (OPG) with additional 19 amino acids at its C-terminus (OPG-XL), causes the characteristic bidirectional phenotype of subchondral bone turnover accompanied by cartilage mineralization in chondrocalcinosis patients. METHODS: OPG-XL was studied by human induced pluripotent stem cells expressing OPG-XL and two isogenic CRISPR/Cas9-corrected controls in cartilage and bone organoids. Osteoclastogenesis was studied with monocytes from OPG-XL carriers and matched healthy controls followed by gene expression characterization. Dual energy X-ray absorptiometry scans and MRI analyses were used to characterize the phenotype of carriers and non-carriers of the mutation. RESULTS: Human OPG-XL carriers relative to sex- and age-matched controls showed, after an initial delay, large active osteoclasts with high number of nuclei. By employing hiPSCs expressing OPG-XL and isogenic CRISPR/Cas9-corrected controls to established cartilage and bone organoids, we demonstrated that expression of OPG-XL resulted in excessive fibrosis in cartilage and high mineralization in bone accompanied by marked downregulation of MGP, encoding matrix Gla protein, and upregulation of DIO2, encoding type 2 deiodinase, gene expression, respectively. CONCLUSIONS: The readthrough mutation at CCAL1 locus in TNFRSF11B identifies an unknown role for OPG-XL in subchondral bone turnover and cartilage mineralization in humans via DIO2 and MGP functions. Previously, OPG-XL was shown to affect binding between RANKL and heparan sulphate (HS) resulting in loss of immobilized OPG-XL. Therefore, effects may be triggered by deficiency in the immobilization of OPG-XL Since the characteristic bidirectional pathophysiology of articular cartilage calcification accompanied by low subchondral bone mineralization is also a hallmark of OA pathophysiology, our results are likely extrapolated to common arthropathies.


Subject(s)
Calcinosis , Cartilage, Articular , Chondrocalcinosis , Induced Pluripotent Stem Cells , Humans , Bone Remodeling , Calcinosis/metabolism , Cartilage, Articular/metabolism , Chondrocalcinosis/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , RANK Ligand/metabolism
4.
Biomolecules ; 11(9)2021 09 13.
Article in English | MEDLINE | ID: mdl-34572569

ABSTRACT

OBJECTIVE: To identify and validate circulating micro RNAs (miRNAs) that mark gene expression changes in articular cartilage early in osteoarthritis (OA) pathophysiology process. METHODS: Within the ongoing RAAK study, human preserved OA cartilage and plasma (N = 22 paired samples) was collected for RNA sequencing (respectively mRNA and miRNA). Spearman correlation was determined for 114 cartilage genes consistently and significantly differentially expressed early in osteoarthritis and 384 plasma miRNAs. Subsequently, the minimal number of circulating miRNAs serving to discriminate between progressors and non-progressors was assessed by regression analysis and area under receiver operating curves (AUC) was calculated with progression data and plasma miRNA sequencing from the GARP study (N = 71). RESULTS: We identified strong correlations (ρ ≥ |0.7|) among expression levels of 34 unique plasma miRNAs and 21 genes, including 4 genes that correlated with multiple miRNAs. The strongest correlation was between let-7d-5p and EGFLAM (ρ = -0.75, P = 6.9 × 10-5). Regression analysis of the 34 miRNAs resulted in a set of 7 miRNAs that, when applied to the GARP study, demonstrated clinically relevant predictive value with AUC > 0.8 for OA progression over 2 years and near-clinical value for progression over 5 years- (AUC = 0.8). CONCLUSIONS: We show that plasma miRNAs levels reflect gene expression levels in cartilage and can be exploited to represent ongoing pathophysiological processes in articular cartilage. We advocate that identified signature of 7 plasma miRNAs can contribute to direct further studies toward early biomarkers predictive for progression of osteoarthritis over 2 and 5 years.


Subject(s)
Biomarkers/metabolism , Cartilage, Articular/metabolism , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Osteoarthritis/blood , Osteoarthritis/genetics , Aged , Aged, 80 and over , Cartilage, Articular/pathology , Circulating MicroRNA/metabolism , Disease Progression , Disease Susceptibility , Female , Humans , Male , Middle Aged , Protein Interaction Maps/genetics , ROC Curve
5.
Arthritis Res Ther ; 23(1): 215, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34399844

ABSTRACT

BACKGROUND: Failing of intrinsic chondrocyte repair after mechanical stress is known as one of the most important initiators of osteoarthritis. Nonetheless, insight into these early mechano-pathophysiological processes in age-related human articular cartilage is still lacking. Such insights are needed to advance clinical development. To highlight important molecular processes of osteoarthritis mechano-pathology, the transcriptome-wide changes following injurious mechanical stress on human aged osteochondral explants were characterized. METHODS: Following mechanical stress at a strain of 65% (65%MS) on human osteochondral explants (n65%MS = 14 versus ncontrol = 14), RNA sequencing was performed. Differential expression analysis between control and 65%MS was performed to determine mechanical stress-specific changes. Enrichment for pathways and protein-protein interactions was analyzed with Enrichr and STRING. RESULTS: We identified 156 genes significantly differentially expressed between control and 65%MS human osteochondral explants. Of note, IGFBP5 (FC = 6.01; FDR = 7.81 × 10-3) and MMP13 (FC = 5.19; FDR = 4.84 × 10-2) were the highest upregulated genes, while IGFBP6 (FC = 0.19; FDR = 3.07 × 10-4) was the most downregulated gene. Protein-protein interactions were significantly higher than expected by chance (P = 1.44 × 10-15 with connections between 116 out of 156 genes). Pathway analysis showed, among others, enrichment for cellular senescence, insulin-like growth factor (IGF) I and II binding, and focal adhesion. CONCLUSIONS: Our results faithfully represent transcriptomic wide consequences of mechanical stress in human aged articular cartilage with MMP13, IGF binding proteins, and cellular senescence as the most notable results. Acquired knowledge on the as such identified initial, osteoarthritis-related, detrimental responses of chondrocytes may eventually contribute to the development of effective disease-modifying osteoarthritis treatments.


Subject(s)
Cartilage, Articular , Osteoarthritis , Cells, Cultured , Chondrocytes , Humans , Osteoarthritis/genetics , Transcriptome
6.
Rheumatol Ther ; 8(1): 499-515, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33608843

ABSTRACT

INTRODUCTION: Likely due to ignored heterogeneity in disease pathophysiology, osteoarthritis (OA) has become the most common disabling joint disease, without effective disease-modifying treatment causing a large social and economic burden. In this study we set out to explore responses of aged human osteochondral explants upon different OA-related perturbing triggers (inflammation, hypertrophy and mechanical stress) for future tailored biomimetic human models. METHODS: Human osteochondral explants were treated with IL-1ß (10 ng/ml) or triiodothyronine (T3; 10 nM) or received 65% strains of mechanical stress (65% MS). Changes in chondrocyte signalling were determined by expression levels of nine genes involved in catabolism, anabolism and hypertrophy. Breakdown of cartilage was measured by sulphated glycosaminoglycans (sGAGs) release, scoring histological changes (Mankin score) and mechanical properties of cartilage. RESULTS: All three perturbations (IL-1ß, T3 and 65% MS) resulted in upregulation of the catabolic genes MMP13 and EPAS1. IL-1ß abolished COL2A1 and ACAN gene expression and increased cartilage degeneration, reflected by increased Mankin scores and sGAGs released. Treatment with T3 resulted in a high and significant upregulation of the hypertrophic markers COL1A1, COL10A1 and ALPL. However, 65% MS increased sGAG release and detrimentally altered mechanical properties of cartilage. CONCLUSION: We present consistent and specific output on three different triggers of OA. Perturbation with the pro-inflammatory IL-1ß mainly induced catabolic chondrocyte signalling and cartilage breakdown, while T3 initiated expression of hypertrophic and mineralization markers. Mechanical stress at a strain of 65% induced catabolic chondrocyte signalling and changed cartilage matrix integrity. The major strength of our ex vivo models was that they considered aged, preserved, human cartilage of a heterogeneous OA patient population. As a result, the explants may reflect a reliable biomimetic model prone to OA onset allowing for development of different treatment modalities.

7.
Rheumatology (Oxford) ; 60(3): 1166-1175, 2021 03 02.
Article in English | MEDLINE | ID: mdl-32885253

ABSTRACT

OBJECTIVE: To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS: This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS: Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION: Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.


Subject(s)
Gene Expression Profiling , Osteoarthritis, Hip/genetics , Osteoarthritis, Knee/genetics , RNA, Messenger/metabolism , Aged , Cartilage, Articular/metabolism , Cluster Analysis , Down-Regulation , Female , Humans , Male , Microarray Analysis , Osteoarthritis, Hip/metabolism , Osteoarthritis, Knee/metabolism , Phenotype , Up-Regulation
8.
Arthritis Rheumatol ; 73(5): 789-799, 2021 05.
Article in English | MEDLINE | ID: mdl-33258547

ABSTRACT

OBJECTIVE: To identify key determinants of the interactive pathophysiologic processes in subchondral bone and cartilage in osteoarthritis (OA). METHODS: We performed RNA sequencing on macroscopically preserved and lesional OA subchondral bone from patients in the Research Arthritis and Articular Cartilage study who underwent joint replacement surgery due to OA (n = 24 sample pairs: 6 hips and 18 knees). Unsupervised hierarchical clustering and differential expression analyses were conducted. Results were combined with data on previously identified differentially expressed genes in cartilage (partly overlapping samples) as well as data on recently identified OA risk genes. RESULTS: We identified 1,569 genes that were significantly differentially expressed between lesional and preserved subchondral bone, including CNTNAP2 (fold change [FC] 2.4, false discovery rate [FDR] 3.36 × 10-5 ) and STMN2 (FC 9.6, FDR 2.36 × 10-3 ). Among these 1,569 genes, 305 were also differentially expressed, and with the same direction of effect, in cartilage, including the recently recognized OA susceptibility genes IL11 and CHADL. Upon differential expression analysis with stratification for joint site, we identified 509 genes that were exclusively differentially expressed in subchondral bone of the knee, including KLF11 and WNT4. These genes that were differentially expressed exclusively in the knee were enriched for involvement in epigenetic processes, characterized by, e.g., HIST1H3J and HIST1H3H. CONCLUSION: IL11 and CHADL were among the most consistently differentially expressed genes OA pathophysiology-related genes in both bone and cartilage. As these genes were recently also identified as robust OA risk genes, they classify as attractive therapeutic targets acting on 2 OA-relevant tissues.


Subject(s)
Bone and Bones/metabolism , Cartilage, Articular/metabolism , Extracellular Matrix Proteins/genetics , Interleukin-11/genetics , Osteoarthritis, Hip/genetics , Osteoarthritis, Knee/genetics , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins/genetics , Cluster Analysis , Female , Humans , Male , Membrane Proteins/genetics , Middle Aged , Nerve Tissue Proteins/genetics , Osteoarthritis, Hip/surgery , Osteoarthritis, Knee/surgery , RNA, Messenger/metabolism , RNA-Seq , Repressor Proteins/genetics , Stathmin/genetics , Wnt4 Protein/genetics
9.
Genome Res ; 25(6): 792-801, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25883321

ABSTRACT

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.


Subject(s)
Genetic Variation , Genome, Human , Alleles , Amino Acid Sequence , Female , Genomics , Haplotypes , Humans , INDEL Mutation , Male , Molecular Sequence Data , Mutation Rate , Polymorphism, Single Nucleotide , Retroelements/genetics , Sequence Alignment , Sequence Analysis, DNA
10.
Eur J Hum Genet ; 22(2): 221-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23714750

ABSTRACT

Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent-offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910-1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14-15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project.


Subject(s)
Genetic Variation , Genome, Human , Adult , Aged , Aged, 80 and over , Databases, Genetic , Female , Gene Frequency , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Netherlands , Phylogeography , Sequence Analysis, DNA , Young Adult
11.
Age (Dordr) ; 33(2): 219-27, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20811950

ABSTRACT

Mechanisms underlying the variation in human life expectancy are largely unknown, but lipid metabolism and especially lipoprotein size was suggested to play an important role in longevity. We have performed comprehensive lipid phenotyping in the Leiden Longevity Study (LLS). By applying multiple logistic regression analysis we tested for the first time the effects of parameters in lipid metabolism (i.e., classical serum lipids, lipoprotein particle sizes, and apolipoprotein E levels) on longevity independent of each other. Parameters in lipid metabolism were measured in offspring of nonagenarian siblings from 421 families of the LLS (n = 1,664; mean age, 59 years) and in the partners of the offspring as population controls (n = 711; mean age, 60 years). In the initial model, where lipoprotein particles sizes, classical serum lipids and apolipoprotein E were included, offspring had larger low-density lipoprotein (LDL) particle sizes (p = 0.017), and lower triglyceride levels (p = 0.026), indicating that they displayed a more beneficial lipid profile. After backwards regression only LDL size (p = 0.014) and triglyceride levels (p = 0.05) were associated with offspring from long-lived families. Sex-specific backwards regression analysis revealed that LDL particle sizes were associated with male longevity (increase in log odds ratio (OR) per unit = 0.21; p = 0.023). Triglyceride levels (decrease OR per unit = 0.22; p = 0.01), but not LDL particle size, were associated with female longevity. Due to the analysis of a comprehensive lipid profile, we confirmed an important role of lipid metabolism in human longevity, with LDL size and triglyceride levels as major predicting factors.


Subject(s)
Lipid Metabolism , Longevity/genetics , Aged, 80 and over , Apolipoproteins E/genetics , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Genotype , Humans , Lipid Metabolism/genetics , Male , Pedigree , Triglycerides/blood
12.
Twin Res Hum Genet ; 9(4): 501-6, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16899157

ABSTRACT

In this article, we present the genomic DNA yield and the microsatellite and single nucleotide polymorphism (SNP) genotyping success rates of genomic DNA extracted from a large number of mouth swab samples. In total, the median yield and quality was determined in 714 individuals and the success rates in 378,480 genotypings of 915 individuals. The median yield of genomic DNA per mouth swab was 4.1 microg (range 0.1-42.2 microg) and was not reduced when mouth swabs were stored for at least 21 months prior to extraction. A maximum of 20 mouth swabs is collected per participant. Mouth swab samples showed in, respectively, 89% for 390 microsatellites and 99% for 24 SNPs a genotyping success rate higher than 75%. A very low success rate of genotyping (0%-10%) was obtained for 3.2% of the 915 mouth swab samples using microsatellite markers. Only 0.005% of the mouth swab samples showed a genotyping success rate lower than 75% (range 58%-71%) using SNPs. Our results show that mouth swabs can be easily collected, stored by our conditions for months prior to DNA extraction and result in high yield and high-quality DNA appropriate for genotyping with high success rate including whole genome searches using microsatellites or SNPs.


Subject(s)
Genome, Human/genetics , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Specimen Handling , Female , Humans , Male , Mass Screening , Sequence Analysis, DNA , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...