Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NanoImpact ; 34: 100500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382676

ABSTRACT

Dispersing Multi-Walled Carbon Nanotubes (MWCNTs) into concrete at low (<1 wt% in cement) concentrations may improve concrete performance and properties and provide enhanced functionalities. When MWCNT-enhanced concrete is fragmented during remodelling or demolition, the stiff, fibrous and carcinogenic MWCNTs will, however, also be part of the respirable particulate matter released in the process. Consequently, systematic aerosolizing of crushed MWCNT-enhanced concretes in a controlled environment and measuring the properties of this aerosol can give valuable insights into the characteristics of the emissions such as concentrations, size range and morphology. These properties impact to which extent the emissions can be inhaled as well as where they are expected to deposit in the lung, which is critical to assess whether these materials might constitute a future health risk for construction and demolition workers. In this work, the impact from MWCNTs on aerosol characteristics was assessed for samples of three concrete types with various amounts of MWCNT, using a novel methodology based on the continuous drop method. MWCNT-enhanced concretes were crushed, aerosolized and the emitted particles were characterized with online and offline techniques. For light-weight porous concrete, the addition of MWCNT significantly reduced the respirable mass fraction (RESP) and particle number concentrations (PNC) across all size ranges (7 nm - 20 µm), indicating that MWCNTs dampened the fragmentation process by possibly reinforcing the microstructure of brittle concrete. For normal concrete, the opposite could be seen, where MWCNTs resulted in drastic increases in RESP and PNC, suggesting that the MWCNTs may be acting as defects in the concrete matrix, thus enhancing the fragmentation process. For the high strength concrete, the fragmentation decreased at the lowest MWCNT concentration, but increased again for the highest MWCNT concentration. All tested concrete types emitted <100 nm particles, regardless of CNT content. SEM imaging displayed CNTs protruding from concrete fragments, but no free fibres were detected.


Subject(s)
Construction Materials , Dust , Nanotubes, Carbon , Particle Size , Nanotubes, Carbon/chemistry , Dust/analysis , Aerosols/analysis , Aerosols/chemistry , Humans , Particulate Matter/analysis
2.
Materials (Basel) ; 13(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339184

ABSTRACT

In this paper, novel rigid polyurethane foams modified with Baltic Sea biomass were compared with traditional petro-based polyurethane foam as reference sample. A special attention was focused on complex studies of microstructure, which was visualized and measured in 3D with high-resolution microcomputed tomography (microCT) and, as commonly applied for this purpose, scanning electron microscopy (SEM). The impact of pore volume, area, shape and orientation on appearance density and thermal insulation properties of polyurethane foams was determined. The results presented in the paper confirm that microcomputed tomography is a useful tool for relatively quick estimation of polyurethane foams' microstructure, what is crucial especially in the case of thermal insulation materials.

3.
Materials (Basel) ; 13(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164320

ABSTRACT

The paper describes the preparation and characterization of rigid polyurethane-polyisocyanurate (PUR-PIR) foams obtained with biopolyol synthesized in the process of liquefaction of biomass from the Baltic Sea. The obtained foams differed in the content of biopolyol in polyol mixture (0-30 wt%) and the isocyanate index (IISO = 200, 250, and 300). The prepared foams were characterized in terms of processing parameters (processing times, synthesis temperature), physical (sol fraction content, apparent density) and chemical structure (Fourier transform infrared spectroscopy), microstructure (computer microtomography), as well as mechanical (compressive strength, dynamic mechanical analysis), and thermal properties (thermogravimetric analysis, thermal conductivity coefficient). The influence of biopolyol and IISO content on the above properties was determined. The addition of up to 30 wt% of biopolyol increased the reactivity of the polyol mixture, and the obtained foams showed enhanced mechanical, thermal, and insulating properties compared to foams prepared solely with petrochemical polyol. The addition of up to 30 wt% of biopolyol did not significantly affect the chemical structure and average cell size. With the increase in IISO, a slight decrease in processing times and mechanical properties was observed. As expected, foams with higher IISO exhibited a higher relative concentration of polyisocyanurate groups in their chemical structure, which was confirmed using principal component analysis (PCA).

SELECTION OF CITATIONS
SEARCH DETAIL
...