Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem Lab Med ; 56(8): 1251-1258, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29525788

ABSTRACT

BACKGROUND: Measuring the glucose concentration in whole blood samples is critical due to unsatisfactory glycolysis inhibition. Previous studies showed that Terumo tubes were superior, but they were taken off the European market in 2016 and alternatives were required. This initiated the present evaluation of glucose stability in five available tube types. METHODS: Venous blood samples were collected from 61 healthy volunteers to test tubes supplied by Terumo (two sets), Greiner FC-Mix, BD FX-Mixture and BD serum. After sampling, the contents were thoroughly mixed and centrifuged within an hour. The glucose concentrations were determined and the samples resuspended except for BD serum tubes (gel barrier). The first 30 samples were stored at room temperature and the remaining 31 at 4°C. After 24, 48, 72 and 96 h, all tubes were (re)centrifuged, and glucose concentration measurements were repeated. RESULTS: Changes in glucose concentrations over time differed significantly between the investigated tube types and to a certain extent between the two storing conditions. Glycolysis was most evident in the BD FX-mixture tubes. Good glucose stability was observed in samples retrieved form BD serum and Greiner tubes. The stability in both Terumo tubes was comparable to that in other studies. Although Greiner and both Terumo tubes are supposed to contain the same glycolysis inhibitor, glucose stability differed between these tubes. CONCLUSIONS: We showed that Greiner is an acceptable alternative to Terumo and that glucose in serum that was rapidly separated from corpuscles by a gel barrier is stable for an extended time.


Subject(s)
Blood Chemical Analysis/instrumentation , Blood Glucose/analysis , Blood Glucose/chemistry , Citric Acid/pharmacology , Enzyme Inhibitors/pharmacology , Glycolysis , Hexokinase/antagonists & inhibitors , Humans , Phosphofructokinase-1/antagonists & inhibitors , Phosphopyruvate Hydratase/antagonists & inhibitors , Sodium Fluoride/pharmacology
2.
Clin Chem Lab Med ; 55(2): 225-230, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27362964

ABSTRACT

BACKGROUND: The innovative pneumatic tube system (iPTS) transports one sample at a time without the use of cartridges and allows rapid sending of samples directly into the bulk loader of a laboratory automation system (LAS). We investigated effects of the iPTS on samples and turn-around time (TAT). METHODS: During transport, a mini data logger recorded the accelerations in three dimensions and reported them in arbitrary area under the curve (AUC) units. In addition representative quantities of clinical chemistry, hematology and coagulation were measured and compared in 20 blood sample pairs transported by iPTS and courier. RESULTS: Samples transported by iPTS were brought to the laboratory (300 m) within 30 s without adverse effects on the samples. The information retrieved from the data logger showed a median AUC of 7 and 310 arbitrary units for courier and iPTS transport, respectively. This is considerably below the reported limit for noticeable hemolysis of 500 arbitrary units. CONCLUSIONS: iPTS reduces TAT by reducing the hands-on time and a fast transport. No differences in the measurement results were found for any of the investigated 36 analytes between courier and iPTS transport. Based on these findings the iPTS was cleared for clinical use in our hospital.


Subject(s)
Automation, Laboratory , Blood Chemical Analysis/instrumentation , Blood Specimen Collection/instrumentation , Humans , Time Factors
3.
Clin Chem Lab Med ; 52(8): 1187-91, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24695042

ABSTRACT

BACKGROUND: High acceleration centrifugation conditions are used in laboratory automation systems to reduce the turnaround time (TAT) of clinical chemistry samples, but not of coagulation samples. This often requires separate sample flows. The CLSI guideline and manufacturers recommendations for coagulation assays aim at reducing platelet counts. For measurement of prothrombin time (PT) and activated partial thromboplastin time (APTT) platelet counts (Plt) below 200×10(9)/L are recommended. Other coagulation assays may require even lower platelet counts, e.g., less than 10 × 10(9)/L. Unifying centrifugation conditions can facilitate the integration of coagulation samples in the overall workflow of a laboratory automation system. METHODS: We evaluated centrifugation conditions of coagulation samples by using high acceleration centrifugation conditions (5 min; 3280×g) in a single and two consecutive runs. RESULTS of coagulation assays [PT, APTT, coagulation factor VIII (F. VIII) and protein S] and platelet counts were compared after the first and second centrifugation. RESULTS: Platelet counts below 200×10(9)/L were obtained in all samples after the first centrifugation and less than 10 × 10(9)/L was obtained in 73% of the samples after a second centrifugation. Passing-Bablok regression analyses showed an equal performance of PT, APTT and F. VIII after first and second centrifugation whereas protein S measurements require a second centrifugation. CONCLUSIONS: Coagulation samples can be integrated into the workflow of a laboratory automation system using high acceleration centrifugation. A single centrifugation was sufficient for PT, APTT and F. VIII whereas two successive centrifugations appear to be sufficient for protein S activity.


Subject(s)
Automation, Laboratory/methods , Blood Coagulation/physiology , Centrifugation/methods , Hemostasis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...