Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 511(2): 434-439, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30797551

ABSTRACT

Misfolded and aggregated proteins are eliminated to maintain protein homeostasis. Autophagy contributes to the removal of protein aggregates. However, if and how proteotoxic stress induces autophagy is poorly understood. Here we show that proteotoxic stress after treatment with azetidine-2-carboxylic acid (AZC), a toxic proline analog, induces autophagy in budding yeast. AZC treatment attenuated target of rapamycin complex 1 (TORC1) activity, resulting in the dephosphorylation of Atg13, a key factor of autophagy. By contrast, AZC treatment did not affect target of rapamycin complex 2 (TORC2). Proteotoxic stress also induced TORC1 inactivation and autophagy in fission yeast and human cells. This study suggested that TORC1 is a conserved key factor to cope with proteotoxic stress in eukaryotic cells.


Subject(s)
Autophagy/drug effects , Azetidinecarboxylic Acid/toxicity , Mechanistic Target of Rapamycin Complex 1/metabolism , Saccharomyces cerevisiae/drug effects , Schizosaccharomyces/drug effects , Fungal Proteins/metabolism , HEK293 Cells , Humans , Saccharomyces cerevisiae/cytology , Schizosaccharomyces/cytology
2.
Nat Commun ; 9(1): 1995, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29777105

ABSTRACT

DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies.


Subject(s)
Arabidopsis/genetics , DNA Breaks, Double-Stranded , Genome, Fungal , Genome, Plant , Saccharomyces cerevisiae/genetics , Arabidopsis/metabolism , DNA Repair , Diploidy , Gene Rearrangement , Genomic Instability , Saccharomyces cerevisiae/metabolism , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...