Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(13)2022 06 25.
Article in English | MEDLINE | ID: mdl-35805111

ABSTRACT

Macrophages are dynamic cells susceptible to the local microenvironment which includes tumor-associated macrophages (TAMs) in cancers. TAMs are a collection of heterogeneous macrophages, including M1 and M2 subtypes, shaped by various activation modes and labeled with various markers in different tumors. CCL22+-infiltrating cells are thought to be significantly associated with the prognosis of cervical cancer patients. Moreover, CCL22 is an established marker of M2a macrophages. Although the phenotypic identification of M1 and M2 macrophages is well established in mice and human macrophages cultured in a medium with fetal calf serum (FCS), fewer studies have focused on M2 subtypes. In addition, the question of whether CCL22 affects polarization of M2a macrophages remains unanswered. This study constructed a co-culture system to shape TAMs in vitro. We found that CCL22 was mainly secreted by TAMs but not cervical cancer cell lines. Human peripheral blood monocytes were differentiated into uncommitted macrophages (M0) and then polarized to M1, M2a, M2b, and M2c macrophages using LPS plus IFNr, IL-4, LPS plus IL1ß, and IL-10, respectively. Using flowcytometry, we found CD80++ was the marker of M1 and M2b, CD206++ was the marker of M2a, and CD163++ was the marker of M2c, compared with M0 macrophages. By regulating CCL22, we found that the mean fluorescence intensity (MFI) of CD206 in TAMs was significantly affected compared to the control group. Therefore, CCL22 could polarize TAMs of cervical cancer toward M2a macrophages. In conclusion, our study revealed that CCL22 could be a therapeutic target for cervical cancer, which might be because of its role in regulating macrophage polarization.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Animals , Biomarkers/metabolism , Cell Differentiation , Lipopolysaccharides/metabolism , Macrophage Activation , Macrophages/metabolism , Mice , Neoplasms/metabolism
2.
Int J Mol Sci ; 23(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35682791

ABSTRACT

(1) Background: Placental immune cells are playing a very important role in a successful placentation and the prevention of pregnancy complications. Macrophages dominate in number and relevance in the maternal and the fetal part of the placenta. The evidence on the polarization state of fetal and maternal macrophages involved in both, healthy and pregnancy-associated diseases, is limited. There is no representative isolation method for the direct comparison of maternal and fetal macrophages so far. (2) Material and Methods: For the isolation of decidual macrophages and Hofbauer cells from term placenta, fresh tissue was mechanically dissected and digested with trypsin and collagenase A. Afterwards cell enrichment was increased by a Percoll gradient. CD68 is represented as pan-macrophage marker, the surface markers CD80 and CD163 were further investigated. (3) Results: The established method revealed a high cell yield and purity of the isolated macrophages and enabled the comparison between decidual macrophages and Hofbauer cells. No significant difference was observed in the percentage of single CD163+ cells in the distinct macrophage populations, by using FACS and immunofluorescence staining. A slight increase of CD80+ cells could be found in the decidual macrophages. Considering the percentage of CD80+CD163- and CD80-CD163+ cells we could not find differences. Interestingly we found an increased number of double positive cells (CD80+CD163+) in the decidual macrophage population in comparison to Hofbauer cells. (4) Conclusion: In this study we demonstrate that our established isolation method enables the investigation of decidual macrophages and Hofbauer cells in the placenta. It represents a promising method for direct cell comparison, enzyme independently, and unaffected by magnetic beads, to understand the functional subsets of placental macrophages and to identify therapeutic targets of pregnancy associated diseases.


Subject(s)
Placenta , Receptors, Cell Surface , Antigens, CD , Antigens, Differentiation, Myelomonocytic/metabolism , B7-1 Antigen/metabolism , Cell Adhesion Molecules/metabolism , Female , Humans , Macrophages/metabolism , Placenta/metabolism , Pregnancy , Receptors, Cell Surface/metabolism
3.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830351

ABSTRACT

The aim of this study was to analyze the expression of peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RxRα), a binding heterodimer playing a pivotal role in the successful trophoblast invasion, in the placental tissue of preeclamptic patients. Furthermore, we aimed to characterize a possible interaction between PPARγ and H3K4me3 (trimethylated lysine 4 of the histone H3), respectively H3K9ac (acetylated lysine 9 of the histone H3), to illuminate the role of histone modifications in a defective trophoblast invasion in preeclampsia (PE). Therefore, the expression of PPARγ and RxRα was analyzed in 26 PE and 25 control placentas by immunohistochemical peroxidase staining, as well as the co-expression with H3K4me3 and H3K9ac by double immunofluorescence staining. Further, the effect of a specific PPARγ-agonist (Ciglitazone) and PPARγ-antagonist (T0070907) on the histone modifications H3K9ac and H3K4me3 was analyzed in vitro. In PE placentas, we found a reduced expression of PPARγ and RxRα and a reduced co-expression with H3K4me3 and H3K9ac in the extravillous trophoblast (EVT). Furthermore, with the PPARγ-antagonist treated human villous trophoblast (HVT) cells and primary isolated EVT cells showed higher levels of the histone modification proteins whereas treatment with the PPARγ-agonist reduced respective histone modifications. Our results show that the stimulation of PPARγ-activity leads to a reduction of H3K4me3 and H3K9ac in trophoblast cells, but paradoxically decreases the nuclear PPARγ expression. As the importance of PPARγ, being involved in a successful trophoblast invasion has already been investigated, our results reveal a pathophysiologic connection between PPARγ and the epigenetic modulation via H3K4me3 and H3K9ac in PE.


Subject(s)
Epigenesis, Genetic , Histones/genetics , PPAR gamma/genetics , Pre-Eclampsia/genetics , Retinoid X Receptor alpha/genetics , Trophoblasts/metabolism , Adult , Benzamides/pharmacology , Case-Control Studies , Female , Histones/metabolism , Humans , Methylation/drug effects , PPAR gamma/agonists , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyridines/pharmacology , Retinoid X Receptor alpha/metabolism , Signal Transduction , Thiazolidinediones/pharmacology , Trophoblasts/drug effects , Trophoblasts/pathology
4.
Free Radic Biol Med ; 137: 131-142, 2019 06.
Article in English | MEDLINE | ID: mdl-31026585

ABSTRACT

Heme oxygenase (HO)-1, a stress-inducible enzyme that converts heme into carbon monoxide (CO), iron and biliverdin, exerts important anti-inflammatory effects in activated macrophages. HO-1 expression is mainly governed by a mutual interplay between the transcriptional factor NRF2 and the nuclear repressor BTB and CNC homology 1 (BACH1), a heme sensor protein. In the current study we hypothesized that alterations in the levels of intracellular labile heme in macrophages stimulated by lipopolysaccharide (LPS), a prototypical pro-inflammatory Toll-like receptor (TLR)4 agonist, are responsible for BACH1-dependent HO-1 expression. To this end, labile heme was determined in both mouse bone marrow-derived macrophages (mBMDMs) and human monocyte-derived macrophages (hMDMs) using an apo-horseradish peroxidase-based assay. We found that LPS raised the levels of labile heme, depressed BACH1 protein and up-regulated HO-1 in mBMDMs. In contrast, in hMDMs LPS decreased labile heme levels while increasing BACH1 expression and down-regulating HO-1. These effects were abolished by the TLR4 antagonist TAK-242, suggesting that TLR4 activation triggers the signaling cascade leading to changes in the labile heme pool. Studies using mBMDMs from BACH1-/- and NRF2-/- mice revealed that regulation of HO-1 and levels of labile heme after LPS stimulation are strictly dependent on BACH1, but not NRF2. A strong interplay between BACH1-mediated HO-1 expression and intracellular levels of labile heme was also confirmed in hMDMs with siRNA knockdown studies and following inhibition of de novo heme synthesis with succinylacetone. Finally, CORM-401, a compound that liberates CO, counteracted LPS-dependent down-regulation of HO-1 and restored levels of labile heme in hMDMs. In conclusion, alterations of labile heme levels in macrophages following TLR4 stimulation play a crucial role in BACH1-mediated regulation of HO-1 expression.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Heme Oxygenase-1/metabolism , Inflammation/metabolism , Macrophages/metabolism , NF-E2-Related Factor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Cells, Cultured , Gene Expression Regulation , Heme/metabolism , Heme Oxygenase-1/genetics , Humans , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Signal Transduction , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors
5.
J Immunol ; 198(6): 2414-2425, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28179495

ABSTRACT

Peroxisomes are proposed to play an important role in the regulation of systemic inflammation; however, the functional role of these organelles in inflammatory responses of myeloid immune cells is largely unknown. In this article, we demonstrate that the nonclassical peroxisome proliferator 4-phenyl butyric acid is an efficient inducer of peroxisomes in various models of murine macrophages, such as primary alveolar and peritoneal macrophages and the macrophage cell line RAW264.7, but not in primary bone marrow-derived macrophages. Further, proliferation of peroxisomes blocked the TLR4 ligand LPS-induced proinflammatory response, as detected by the reduced induction of the proinflammatory protein cyclooxygenase (COX)-2 and the proinflammatory cytokines TNF-α, IL-6, and IL-12. In contrast, disturbing peroxisome function by knockdown of peroxisomal gene Pex14 or Mfp2 markedly increased the LPS-dependent upregulation of the proinflammatory proteins COX-2 and TNF-α. Specifically, induction of peroxisomes did not affect the upregulation of COX-2 at the mRNA level, but it reduced the half-life of COX-2 protein, which was restored by COX-2 enzyme inhibitors but not by proteasomal and lysosomal inhibitors. Liquid chromatography-tandem mass spectrometry analysis revealed that various anti-inflammatory lipid mediators (e.g., docosahexaenoic acid) were increased in the conditioned medium from peroxisome-induced macrophages, which blocked LPS-induced COX-2 upregulation in naive RAW264.7 cells and human primary peripheral blood-derived macrophages. Importantly, LPS itself induced peroxisomes that correlated with the regulation of COX-2 during the late phase of LPS activation in macrophages. In conclusion, our findings identify a previously unidentified role for peroxisomes in macrophage inflammatory responses and suggest that peroxisomes are involved in the physiological cessation of macrophage activation.


Subject(s)
Macrophage Activation , Macrophages/immunology , Peroxisomes/immunology , Phenylbutyrates/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Docosahexaenoic Acids/metabolism , Gene Knockdown Techniques , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Peroxisomal Multifunctional Protein-2/genetics , Primary Cell Culture , RAW 264.7 Cells , Repressor Proteins/genetics
6.
PLoS One ; 11(9): e0162863, 2016.
Article in English | MEDLINE | ID: mdl-27657535

ABSTRACT

Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling.

7.
PLoS One ; 7(7): e40100, 2012.
Article in English | MEDLINE | ID: mdl-22808100

ABSTRACT

A large body of functional and epidemiological evidence have previously illustrated the impact of specific MHC class I subtypes on clinical outcome during HIV-1 infection, and these observations have recently been re-iterated in genome wide association studies (GWAS). Yet because of the complexities surrounding GWAS-based approaches and the lack of knowledge relating to the identity of rarer single nucleotide polymorphism (SNP) variants, it has proved difficult to discover independent causal variants associated with favourable immune control. This is especially true of the candidate variants within the HLA region where many of the recently proposed disease influencing SNPs appear to reflect linkage with 'protective' MHC class I alleles. Yet causal MHC-linked SNPs may exist but remain overlooked owing to the complexities associated with their identification. Here we focus on the ancestral TNFα promoter -237A variant (rs361525), shown historically to be in complete linkage disequilibrium with the 'protective' HLA-B*5701 allele. Many of the ancestral SNPs within the extended TNFα promoter have been associated with both autoimmune conditions and disease outcomes, however, the direct role of these variants on TNFα expression remains controversial. Yet, because of the important role played by TNFα in HIV-1 infection, and given the proximity of the -237 SNP to the core promoter, its location within a putative repressor region previously characterized in mice, and its disruption of a methylation-susceptible CpG dinucleotide motif, we chose to carefully evaluate its impact on TNFα production. Using a variety of approaches we now demonstrate that carriage of the A SNP is associated with lower TNFα production, via a mechanism not readily explained by promoter methylation nor the binding of transcription factors or repressors. We propose that the -237A variant could represent a minor causal SNP that additionally contributes to the HLA-B*5701-mediated 'protective' effect during HIV-1 infection.


Subject(s)
HLA-B Antigens/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Base Sequence , Cell Line , DNA Methylation/drug effects , DNA Methylation/genetics , Epigenesis, Genetic/drug effects , Genes, Reporter , HIV Infections/genetics , Haplotypes/genetics , Homozygote , Humans , Lipopolysaccharides/pharmacology , Luciferases/metabolism , Lymphocyte Activation/drug effects , Mice , Molecular Sequence Data , Monocytes/cytology , Monocytes/drug effects , Protein Binding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Software , Solubility , Tetradecanoylphorbol Acetate/pharmacology , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...