Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 111(5): 056404, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952425

ABSTRACT

The fundamental electronic structure of the widely used battery material Li(x)CoO(2) still remains a mystery. Soft x-ray absorption spectroscopy of Li(x)CoO(2) reveals that holes with strong O 2p character play an essential role in the electronic conductivity of the Co(3+)/Co(4+) mixed valence CoO(2) layer. The oxygen holes are bound to the Co(4+) sites and the Li-ion vacancy, suggesting that the Li-ion flow can be stabilized by oxygen hole back flow. Such an oxygen hole state of Li(x)CoO(2) is unique among the various oxide-based battery materials and is one of the key ingredients to improving their electronic and Li-ion conductivities.

2.
Phys Rev Lett ; 104(17): 177002, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20482128

ABSTRACT

In the heavily-electron-doped regime of the Ba(Fe,Co)2As2 superconductor, three hole bands at the zone center are observed and two of them reach the Fermi level. The larger hole pocket at the zone center is apparently nested with the smaller electron pocket around the zone corner. However, the (pi,0) Fermi surface reconstruction reported for the hole-doped case is absent in the heavily-electron-doped case. This observation shows that the apparent Fermi surface nesting alone is not enough to enhance the antiferromagnetic correlation as well as the superconducting transition temperature.

3.
Phys Rev Lett ; 103(2): 026402, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19659224

ABSTRACT

We report on a photoemission study of Ta2NiSe5 that has a quasi-one-dimensional structure and an insulating ground state. Ni 2p core-level spectra show that the Ni 3d subshell is partially occupied and the Ni 3d states are heavily hybridized with the Se 4p states. In angle-resolved photoemission spectra, the valence-band top is found to be extremely flat, indicating that the ground state can be viewed as an excitonic insulator state between the Ni 3d-Se 4p hole and the Ta 5d electron. We argue that the high atomic polarizability of Se plays an important role to stabilize the excitonic state.

SELECTION OF CITATIONS
SEARCH DETAIL
...