Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 9(1): 262-271, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38190731

ABSTRACT

Iron oxide nanoparticles (IONPs) have wide utility in applications from drug delivery to the rewarming of cryopreserved tissues. Due to the complex behavior of IONPs (e.g., uneven particle distribution and aggregation), further developments and clinical translation can be accelerated by having access to a noninvasive method for tissue IONP quantification. Currently, there is no low-cost method to nondestructively track IONPs in tissues across a wide range of concentrations. This work describes the performance of a low-cost, tabletop, longitudinally detected electron paramagnetic resonance (LOD-EPR) system to address this issue in the field of cryopreservation, which utilizes IONPs for rewarming of rat kidneys. A low-cost LOD-EPR system is realized via simultaneous transmit and receive using MHz continuous-wave transverse excitation with kHz modulation, which is longitudinally detected at the modulation frequency to provide both geometric and frequency isolation. The accuracy of LOD-EPR for IONP quantification is compared with NMR relaxometry. Solution measurements show excellent linearity (R2 > 0.99) versus Fe concentration for both measurements on EMG308 (a commercial nanoparticle), silica-coated EMG308, and PEG-coated EMG308 in water. The LOD-EPR signal intensity and NMR longitudinal relaxation rate constant (R1) of water are affected by particle coating, solution viscosity, and particle aggregation. R1 remains linear but with a reduced slope when in cryoprotective agent (CPA) solution, whereas the LOD-EPR signal is relatively insensitive to this. R1 does not correlate well with Fe concentration in rat kidney sections (R2 = 0.3487), while LOD-EPR does (R2 = 0.8276), with a linear regression closely matching that observed in solution and CPA.


Subject(s)
Magnetic Resonance Imaging , Water , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging/methods , Magnetic Iron Oxide Nanoparticles
2.
J Magn Reson ; 342: 107279, 2022 09.
Article in English | MEDLINE | ID: mdl-35952409

ABSTRACT

A frequency-swept longitudinal detection (LOD) EPR system is described for ultra-low field spectroscopy and relaxometry. With the capability of performing simultaneous transmit and receive with -80 dB isolation, this LOD-EPR can capture signals with decay constants in the nanosecond range and in theory even sub-nanosecond range, at fields close to the earth's magnetic field. The theoretical principles underlying this LOD-EPR are based on a fictitious field that accounts for the Z-axis magnetization polarized by a radiofrequency field alone. The electron spin relaxation time is obtained directly from a previously derived equation that describes the relationship between the relaxation time and the spectral peak position. Herein, the first frequency-swept LOD-EPR system is described in detail, along with experimental measurements of the short relaxation time (∼30 ns) of the free radical, 2,2-diphenyl-1-picrylhydrazyl, at zero to low field.


Subject(s)
Electrons , Electron Spin Resonance Spectroscopy/methods
3.
J Magn Reson ; 321: 106855, 2020 12.
Article in English | MEDLINE | ID: mdl-33186882

ABSTRACT

When viewed in a rotating frame of reference, a transverse-plane radiofrequency (RF) field manifests as a longitudinal field component called the fictitious field. By modulating the RF field and thus the fictitious field, detectable longitudinal magnetization patterns have previously been shown to be measurable. By combining fictitious-field modulation and longitudinal detection, here we demonstrate EPR spectroscopy and one-dimensional imaging in a custom-built longitudinal detection system operating at an ultra-low frequency (24 MHz) for detecting electron spins with short (~nanoseconds) relaxation times. Simultaneous transmit and receive with low transmitter leakage level (~80 dB isolation) is also demonstrated.


Subject(s)
Dextrans/chemistry , Electron Spin Resonance Spectroscopy/methods , Magnetite Nanoparticles/chemistry , Algorithms , Electron Spin Resonance Spectroscopy/instrumentation , Equipment Design , Radio Waves , Signal Processing, Computer-Assisted
4.
J Magn Reson ; 220: 26-31, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22683578

ABSTRACT

This work describes our first efforts to implement SWIFT (SWeep Imaging with Fourier Transformation) in continuous mode for imaging and spectroscopy. We connected a standard quadrature hybrid with a quad coil and acquired NMR signal during continuous radiofrequency excitation. We utilized a chirped radiofrequency pulse to minimize the instantaneous radiofrequency field during excitation of the spin system for the target flip angle and bandwidth. Due to the complete absence of "dead time", continuous SWIFT has the potential to extend applications of MRI and spectroscopy in studies of spin systems having extremely fast relaxation or broad chemical shift distributions beyond the range of existing MRI sequences.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Spectroscopy/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...