Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000481

ABSTRACT

Pollen, in addition to allergens, comprise low molecular weight components (LMC) smaller than 3 kDa. Emerging evidence indicates the relevance of LMC in allergic immune responses. However, the interaction of birch pollen (BP)-derived LMC and epithelial cells has not been extensively studied. We investigated epithelial barrier modifications induced by exposure to BP LMC, using the human bronchial epithelial cell line 16HBE14o-. Epithelial cell monolayers were apically exposed to the major BP allergen Bet v 1, aqueous BP extract or BP-derived LMC. Barrier integrity after the treatments was monitored by measuring transepithelial electrical resistance at regular intervals and by using the xCELLigence Real-Time Cell Analysis system. The polarized release of cytokines 24 h following treatment was measured using a multiplex immunoassay. Epithelial barrier integrity was significantly enhanced upon exposure to BP LMC. Moreover, BP LMC induced the repair of papain-mediated epithelial barrier damage. The apical release of CCL5 and TNF-α was significantly reduced after exposure to BP LMC, while the basolateral release of IL-6 significantly increased. In conclusion, the results of our study demonstrate that BP-derived LMC modify the physical and immunological properties of bronchial epithelial cells and thus regulate airway epithelial barrier responses.


Subject(s)
Betula , Bronchi , Epithelial Cells , Molecular Weight , Pollen , Humans , Bronchi/metabolism , Bronchi/cytology , Bronchi/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Allergens , Cytokines/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects
2.
Allergy ; 76(11): 3359-3373, 2021 11.
Article in English | MEDLINE | ID: mdl-34310736

ABSTRACT

The WHO/IUIS Allergen Nomenclature Database (http://allergen.org) provides up-to-date expert-reviewed data on newly discovered allergens and their unambiguous nomenclature to allergen researchers worldwide. This review discusses the 106 allergens that were accepted by the Allergen Nomenclature Sub-Committee between 01/2019 and 03/2021. Information about protein family membership, patient cohorts, and assays used for allergen characterization is summarized. A first allergenic fungal triosephosphate isomerase, Asp t 36, was discovered in Aspergillus terreus. Plant allergens contained 1 contact, 38 respiratory, and 16 food allergens. Can s 4 from Indian hemp was identified as the first allergenic oxygen-evolving enhancer protein 2 and Cic a 1 from chickpeas as the first allergenic group 4 late embryogenesis abundant protein. Among the animal allergens were 19 respiratory, 28 food, and 3 venom allergens. Important discoveries include Rap v 2, an allergenic paramyosin in molluscs, and Sal s 4 and Pan h 4, allergenic fish tropomyosins. Paramyosins and tropomyosins were previously known mainly as arthropod allergens. Collagens from barramundi, Lat c 6, and salmon, Sal s 6, were the first members from the collagen superfamily added to the database. In summary, the addition of 106 new allergens to the previously listed 930 allergens reflects the continuous linear growth of the allergen database. In addition, 17 newly described allergen sources were included.


Subject(s)
Allergens , Food Hypersensitivity , Animals , Aspergillus , Humans , Tropomyosin , World Health Organization
3.
Sci Rep ; 10(1): 12871, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732983

ABSTRACT

Plasmodium falciparum causes the most severe form of malaria in humans. The adhesion of the infected erythrocytes (IEs) to endothelial receptors (sequestration) and to uninfected erythrocytes (rosetting) are considered major elements in the pathogenesis of the disease. Both sequestration and rosetting appear to involve particular members of several IE variant surface antigens (VSAs) as ligands, interacting with multiple vascular host receptors, including the ABO blood group antigens. In this study, we subjected genetically distinct P. falciparum parasites to in vitro selection for increased IE adhesion to ABO antigens in the absence of potentially confounding receptors. The selection resulted in IEs that adhered stronger to pure ABO antigens, to erythrocytes, and to various human cell lines than their unselected counterparts. However, selection did not result in marked qualitative changes in transcript levels of the genes encoding the best-described VSA families, PfEMP1 and RIFIN. Rather, overall transcription of both gene families tended to decline following selection. Furthermore, selection-induced increases in the adhesion to ABO occurred in the absence of marked changes in immune IgG recognition of IE surface antigens, generally assumed to target mainly VSAs. Our study sheds new light on our understanding of the processes and molecules involved in IE sequestration and rosetting.


Subject(s)
ABO Blood-Group System/metabolism , Erythrocytes , Gene Expression Regulation , Malaria, Falciparum/metabolism , Membrane Proteins/biosynthesis , Plasmodium falciparum/metabolism , Protozoan Proteins/biosynthesis , Animals , CHO Cells , Cricetulus , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...