Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biomed Opt Express ; 14(5): 2276-2292, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37206114

ABSTRACT

In the present study, we investigated the dynamics of a femtosecond (fs) laser induced bio-printing with cell-free and cell-laden jets under the variation of laser pulse energy and focus depth, by using time-resolved imaging. By increasing the laser pulse energy or decreasing the focus depth thresholds for a first and second jet are exceeded and more laser pulse energy is converted to kinetic jet energy. With increasing jet velocity, the jet behavior changes from a well-defined laminar jet, to a curved jet and further to an undesired splashing jet. We quantified the observed jet forms with the dimensionless hydrodynamic Weber and Rayleigh numbers and identified the Rayleigh breakup regime as the preferred process window for single cell bioprinting. Herein, the best spatial printing resolution of 42 ± 3 µm and single cell positioning precision of 12.4 µm are reached, which is less than one single cell diameter about 15 µm.

2.
J Funct Biomater ; 13(3)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35997445

ABSTRACT

The wound healing process is much more complex than just the four phases of hemostasis, inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers or ECM molecules using bioprinting can be used to promote the wound healing process, especially for complex 3D tissue lesions like chronic wounds. Here, a 3D-printed mold has been designed to produce customizable collagen type-I sheets containing human umbilical vein endothelial cells (HUVECs) and adipose stromal cells (ASCs) for the first time. In these 3D collagen sheets, the cellular activity leads to a restructuring of the collagen matrix. The upregulation of the growth factors Serpin E1 and TIMP-1 could be demonstrated in the 3D scaffolds with ACSs and HUVECs in co-culture. Both growth factors play a key role in the wound healing process. The capillary-like tube formation of HUVECs treated with supernatant from the collagen sheets revealed the secretion of angiogenic growth factors. Altogether, this demonstrates that collagen type I combined with the co-cultivation of HUVECs and ACSs has the potential to accelerate the process of angiogenesis and, thereby, might promote wound healing.

3.
Nat Cell Biol ; 24(5): 659-671, 2022 05.
Article in English | MEDLINE | ID: mdl-35550611

ABSTRACT

Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.


Subject(s)
Nerve Tissue Proteins , Pluripotent Stem Cells , Animals , Cell Differentiation , Cicatrix/pathology , Cicatrix/prevention & control , Fibrosis , Humans , Myocardium/pathology , Myocytes, Cardiac/pathology , Pluripotent Stem Cells/pathology , Receptors, Immunologic , Swine
4.
Circulation ; 144(17): 1409-1428, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34694888

ABSTRACT

BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.


Subject(s)
Hypoplastic Left Heart Syndrome/genetics , Organogenesis/genetics , Genetic Heterogeneity , Humans
5.
Micromachines (Basel) ; 12(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34683222

ABSTRACT

Femtosecond laser pulses have been successfully used for film-free single-cell bioprinting, enabling precise and efficient selection and positioning of individual mammalian cells from a complex cell mixture (based on morphology or fluorescence) onto a 2D target substrate or a 3D pre-processed scaffold. In order to evaluate the effects of higher pulse durations on the bioprinting process, we investigated cavitation bubble and jet dynamics in the femto- and picosecond regime. By increasing the laser pulse duration from 600 fs to 14.1 ps, less energy is deposited in the hydrogel for the cavitation bubble expansion, resulting in less kinetic energy for the jet propagation with a slower jet velocity. Under appropriate conditions, single cells can be reliably transferred with a cell survival rate after transfer above 95% through the entire pulse duration range. More cost efficient and compact laser sources with pulse durations in the picosecond range could be used for film-free bioprinting and single-cell transfer.

6.
Nat Mater ; 20(6): 892-903, 2021 06.
Article in English | MEDLINE | ID: mdl-33495631

ABSTRACT

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Subject(s)
Basement Membrane/metabolism , Mechanical Phenomena , Neoplasm Metastasis , Biomechanical Phenomena , Cell Line, Tumor , Humans , Netrins/metabolism
7.
Adv Healthc Mater ; 9(24): e2000918, 2020 12.
Article in English | MEDLINE | ID: mdl-33025765

ABSTRACT

Cellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell-ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell-ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two-photon stereolithography is adopted to print up to mm-sized high-precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein-based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two-pass printing or post-print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7-300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D-lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single-cell and tissue dynamics in response to defined mechanical and bio-molecular cues and is ultimately scalable to full organs.


Subject(s)
Printing, Three-Dimensional , Tissue Scaffolds , Animals , Extracellular Matrix , Gelatin , Mice , Stereolithography , Tissue Engineering
8.
PLoS One ; 15(8): e0237116, 2020.
Article in English | MEDLINE | ID: mdl-32857787

ABSTRACT

Bone metastases are a frequent complication in prostate cancer, and several studies have shown that vitamin D deficiency promotes bone metastases. However, while many studies focus on vitamin D's role in cell metabolism, the effect of chronically low vitamin D levels on bone tissue, i.e. insufficient mineralization of the tissue, has largely been ignored. To investigate, whether poor tissue mineralization promotes cancer cell attachment, we used a fluorescence based adhesion assay and single cell force spectroscopy to quantify the adhesion of two prostate cancer cell lines to well-mineralized and demineralized dentin, serving as biomimetic bone model system. Adhesion rates of bone metastases-derived PC3 cells increased significantly on demineralized dentin. Additionally, on mineralized dentin, PC3 cells adhered mainly via membrane anchored surface receptors, while on demineralized dentin, they adhered via cytoskeleton-anchored transmembrane receptors, pointing to an interaction via exposed collagen fibrils. The adhesion rate of lymph node derived LNCaP cells on the other hand is significantly lower than that of PC3 and not predominately mediated by cytoskeleton-linked receptors. This indicates that poor tissue mineralization facilitates the adhesion of invasive cancer cells by the exposure of collagen and emphasizes the disease modifying effect of sufficient vitamin D for cancer patients.


Subject(s)
Calcification, Physiologic , Cell Adhesion , Prostatic Neoplasms/metabolism , Animals , Biomimetic Materials/chemistry , Cell Line, Tumor , Collagen/metabolism , Cytoskeleton/metabolism , Dentin/chemistry , Elephants , Humans , Male , Receptors, Cell Surface/metabolism , Tissue Scaffolds/chemistry , Vitamin D/metabolism
9.
J Tissue Eng ; 10: 2041731419859157, 2019.
Article in English | MEDLINE | ID: mdl-31384416

ABSTRACT

A manufacturing process for sheet-based stacked scaffolds (SSCs) based on laser-cutting (LC) was developed. The sheets consist of Polycaprolactone/Hydroxyapatite (PCL/HA) composite material. Single sheets were cut from a PCL/HA foil and stacked to scaffolds with interconnecting pores of defined sizes. HA quantities up to 50% were processable with high reproducibility, while the accuracy was dependent on the applied laser power. The smallest achievable pore sizes were about 40 µm, while the smallest stable solid structures were about 125 µm. The human mesenchymal stem cell line SCP-1 was cultured on the manufactured PCL/HA scaffolds. The cells developed a natural morphology and were able to differentiate to functional osteoblasts. The generation of PCL/HA SSCs via LC offers new possibilities for tissue engineering (TE) approaches. It is reliable and fast, with high resolution. The SSC approach allows for facile cell seeding and analysis of cell fate within the three-dimensional cell culture, thus allowing for the generation of functional tissue constructs.

10.
ACS Nano ; 13(6): 7155-7165, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31184856

ABSTRACT

Attachment to host tissue is a prerequisite for successful host colonization and invasion of pathogens. Many pathogenic bacteria use surface appendices, called pili, to bind and firmly attach to host tissue surfaces. Although it has been speculated that the laterally positioned D3 domain of the pilus-1 backbone protein RrgB of Streptococcus pneumoniae may promote bacterial-host interaction, via adhesion to extracellular matrix molecules, such as collagen, earlier studies showed no affinity of RrgB to collagen I. Using atomic force microscopy-based single molecule force spectroscopy combined with lateral force microscopy, we show that under mechanical load, RrgB in fact binds to human collagen I in a force-dependent manner. We observe exceptionally strong interactions, with interaction forces reaching as much as 1500 pN, and we show that high force loading and shearing rates enhance and further strengthen the interaction. In addition, the affinity of RrgB to collagen I under mechanical load not only depends on the orientation of the D3 domain but also on the orientation of the collagen fibrils, relative to the pulling direction. Both exceptionally high binding forces and force-induced bond strengthening resemble the behavior of so-called catch bonds, which have recently been observed in bacterial adhesins, but have not been reported for multimeric backbone subunits of virulence related pili.


Subject(s)
Collagen Type I/metabolism , Fimbriae Proteins/metabolism , Tensile Strength , Binding Sites , Collagen Type I/chemistry , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/metabolism , Humans , Microscopy, Atomic Force , Protein Binding , Single Molecule Imaging , Streptococcus pneumoniae
11.
Biochem Biophys Res Commun ; 509(3): 839-844, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30638929

ABSTRACT

Tendon stem/progenitor cells (TSPC) are potential targets for regenerative medicine and the treatment of tendon injuries. The frequency of such injuries increases in elderly patients while the proportion of functional TSPCs in tendon tissue decreases, protracting tendon repair. Using atomic force microscopy (AFM), we show that cell stiffness and size increase in TSPCs isolated from elderly patients (A-TSPC) compared to TSPCs from younger patients (Y-TSPC). Additionally, two-photon excited fluorescence (TPEF) microscopy revealed a denser, well-structured actin cytoskeleton in A-TSPC, which correlates with the augmented cell stiffness. Treating A-TSPC with ROCK-inhibitor, reverses these age-related changes, and has rejuvenating effect on cell morphology and stiffness. We assume that cellular stiffness is a suitable marker for cell aging and ROCK a potential target for therapeutic applications of cell rejuvenation.


Subject(s)
Amides/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Stem Cells/cytology , Tendons/cytology , rho-Associated Kinases/antagonists & inhibitors , Adult , Aged , Biomechanical Phenomena/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Size/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Elastic Modulus/drug effects , Humans , Middle Aged , Rejuvenation , Stem Cells/drug effects , Stem Cells/metabolism , Tendons/drug effects , Tendons/metabolism , Young Adult , rho-Associated Kinases/metabolism
12.
Tissue Eng Part C Methods ; 24(10): 585-595, 2018 10.
Article in English | MEDLINE | ID: mdl-30234443

ABSTRACT

Bioreactor systems facilitate three-dimensional (3D) cell culture by coping with limitations of static cultivation techniques. To allow for the investigation of proper cultivation conditions and the reproducible generation of tissue-engineered grafts, a bioreactor system, which comprises the control of crucial cultivation parameters in independent-operating parallel bioreactors, is beneficial. Furthermore, the use of a bioreactor as an automated cell seeding tool enables even cell distributions on stable scaffolds. In this study, we developed a perfusion microbioreactor system, which enables the cultivation of 3D cell cultures in an oxygen-controlled environment in up to four independent-operating bioreactors. Therefore, perfusion microbioreactors were designed with the help of computer-aided design, and manufactured using the 3D printing technologies stereolithography and fused deposition modeling. A uniform flow distribution in the microbioreactor was shown using a computational fluid dynamics model. For oxygen measurements, microsensors were integrated in the bioreactors to measure the oxygen concentration (OC) in the geometric center of the 3D cell cultures. To control the OC in each bioreactor independently, an automated feedback loop was developed, which adjusts the perfusion velocity according to the oxygen sensor signal. Furthermore, an automated cell seeding protocol was implemented to facilitate the even distribution of cells within a stable scaffold in a reproducible way. As proof of concept, the human mesenchymal stem cell line SCP-1 was seeded on bovine cancellous bone matrix of 1 cm3 and cultivated in the developed microbioreactor system at different oxygen levels. The oxygen control was capable to maintain preset oxygen levels ±0.5% over a cultivation period of several days. Using the automated cell seeding procedure resulted in evenly distributed cells within a stable scaffold. In summary, the developed microbioreactor system enables the cultivation of 3D cell cultures in an automated and thus reproducible way by providing up to four independently operating, oxygen-controlled bioreactors. In combination with the automated cell seeding procedure, the bioreactor system opens up new possibilities to conduct more reproducible experiments to investigate optimal cultivation parameters and to generate tissue-engineering grafts in an oxygen-controlled environment.


Subject(s)
Bioreactors , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Oxygen/pharmacology , Cells, Cultured , Humans , Hydrodynamics , Printing, Three-Dimensional , Tissue Scaffolds/chemistry
13.
J Vis Exp ; (138)2018 08 20.
Article in English | MEDLINE | ID: mdl-30176022

ABSTRACT

In recent years, atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) extended our understanding of molecular properties and functions. It gave us the opportunity to explore a multiplicity of biophysical mechanisms, e.g., how bacterial adhesins bind to host surface receptors in more detail. Among other factors, the success of SMFS experiments depends on the functional and native immobilization of the biomolecules of interest on solid surfaces and AFM tips. Here, we describe a straightforward protocol for the covalent coupling of proteins to silicon surfaces using silane-PEG-carboxyls and the well-established N-hydroxysuccinimid/1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimid (EDC/NHS) chemistry in order to explore the interaction of pilus-1 adhesin RrgA from the Gram-positive bacterium Streptococcus pneumoniae (S. pneumoniae) with the extracellular matrix protein fibronectin (Fn). Our results show that the surface functionalization leads to a homogenous distribution of Fn on the glass surface and to an appropriate concentration of RrgA on the AFM cantilever tip, apparent by the target value of up to 20% of interaction events during SMFS measurements and revealed that RrgA binds to Fn with a mean force of 52 pN. The protocol can be adjusted to couple via site specific free thiol groups. This results in a predefined protein or molecule orientation and is suitable for other biophysical applications besides the SMFS.


Subject(s)
Mechanical Phenomena , Microscopy, Atomic Force/methods , Proteins/chemistry
14.
PLoS One ; 13(5): e0195479, 2018.
Article in English | MEDLINE | ID: mdl-29718923

ABSTRACT

Laser-induced cell transfer has been developed in recent years for the flexible and gentle printing of cells. Because of the high transfer rates and the superior cell survival rates, this technique has great potential for tissue engineering applications. However, the fact that material from an inorganic sacrificial layer, which is required for laser energy absorption, is usually transferred to the printed target structure, constitutes a major drawback of laser based cell printing. Therefore alternative approaches using deep UV laser sources and protein based acceptor films for energy absorption, have been introduced. Nevertheless, deep UV radiation can introduce DNA double strand breaks, thereby imposing the risk of carcinogenesis. Here we present a method for the laser-induced transfer of hydrogels and mammalian cells, which neither requires any sacrificial material for energy absorption, nor the use of UV lasers. Instead, we focus a near infrared femtosecond (fs) laser pulse (λ = 1030 nm, 450 fs) directly underneath a thin cell layer, suspended on top of a hydrogel reservoir, to induce a rapidly expanding cavitation bubble in the gel, which generates a jet of material, transferring cells and hydrogel from the gel/cell reservoir to an acceptor stage. By controlling laser pulse energy, well-defined cell-laden droplets can be transferred with high spatial resolution. The transferred human (SCP1) and murine (B16F1) cells show high survival rates, and good cell viability. Time laps microscopy reveals unaffected cell behavior including normal cell proliferation.


Subject(s)
Cells/cytology , Cells/radiation effects , Infrared Rays , Lasers , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Mice , Time Factors
15.
ACS Nano ; 12(1): 549-558, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29298375

ABSTRACT

For host cell adhesion and invasion, surface piliation procures benefits for bacteria. A detailed investigation of how pili adhere to host cells is therefore a key aspect in understanding their role during infection. Streptococcus pneumoniae TIGR 4, a clinical relevant serotype 4 strain, is capable of expressing pilus-1 with terminal RrgA, an adhesin interacting with host extracellular matrix (ECM) proteins. We used single molecule force spectroscopy to investigate the binding of full-length RrgA and single RrgA domains to fibronectin. Our results show that full-length RrgA and its terminal domains D3 and D4 bind to fibronectin with forces of 51.6 (full length), 52.8 (D3), and 46.2 pN (D4) at force-loading rates of around 1500 pN/s. Selective saturation of D3 and D4 binding sites on fibronectin showed that both domains can interact simultaneously with fibronectin, revealing a two-domain binding mechanism for the pilus-1 tip protein. The high off rates and the corresponding short lifetime of the RrgA Fn bond (τ = 0.26 s) may enable piliated pneumococci to form and maintain a transient contact to fibronectin-containing host surfaces and thus to efficiently scan the surface for specific receptors promoting host cell adhesion and invasion. These molecular properties could be essential for S. pneumoniae pili to mediate initial contact to the host cells and-shared with other piliated Gram-positive bacteria-favor host invasion.


Subject(s)
Fibronectins/metabolism , Fimbriae Proteins/metabolism , Pneumococcal Infections/metabolism , Streptococcus pneumoniae/metabolism , Virulence Factors/metabolism , Binding Sites , Fibronectins/chemistry , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/metabolism , Humans , Microscopy, Atomic Force , Protein Binding , Protein Domains , Virulence Factors/chemistry
16.
Dev Dyn ; 246(7): 502-516, 2017 07.
Article in English | MEDLINE | ID: mdl-28411398

ABSTRACT

BACKGROUND: Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. RESULTS: Histological sections and staining of F-actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F-actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. CONCLUSIONS: Our data suggest an essential role of FGFR and a Rho-ROCK-myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502-516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Subject(s)
Constriction , Hydra/physiology , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/physiology , Actins/metabolism , Animals , Cell Shape , Cytoskeleton/metabolism , Myosin Type II/metabolism , Reproduction , rho-Associated Kinases
17.
Biointerphases ; 9(3): 031002, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25280843

ABSTRACT

To allow medical application of an artificial bladder made of biocompatible polyurethane, a long-term stable antibacterial coating is required. Alone, the artificial bladder exhibits no defense against microorganisms. Silver coating provides long-term antibacterial protection by the continuous release of silver ions into aqueous solutions. To control and to prolong the rate of silver ion release, the deposited silver film has to be protected by an inert film of biocompatible polyparylene by means of chemical vapor deposition. In this study, an antibacterial artificial bladder surface was developed by the formation of a sandwich structure consisting of silver and a biocompatible polymer (polyparylene) as a diffusion barrier. Specifically, this study analyzed the correlation between polyparylene thickness and silver release to determine optimal concentrations to combat common bacteria in vitro. The release of silver from sandwich structures was investigated in vitro by testing different thicknesses of polyparylene (0, 190, 540, and 1000 nm) as a diffusion barrier. The best result was demonstrated with a thickness of 190 nm of polyparylene, which yielded a silver dispense rate of 650 pg/(cm(2)⋅min), which would yield bacteriozidal concentrations above 30 µg/l in the bladder volume. The authors confirmed the antibacterial effect in vitro against common urinary tract infection pathogens, namely, Escherichia coli and Staphylococcus cohnii. Inhibition of bacterial growth could be detected within 8 h. A diffusion assay with spherical silver spots showed concentric zones free of bacterial growth. Our results suggest the possible utility of silver-polyparylene coatings as antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Artificial Organs , Coated Materials, Biocompatible/pharmacology , Silver/pharmacology , Silver/pharmacokinetics , Bacterial Secretion Systems , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Staphylococcus/drug effects , Staphylococcus/growth & development
18.
Dev Genes Evol ; 219(9-10): 455-68, 2009 Oct.
Article in English | MEDLINE | ID: mdl-20016912

ABSTRACT

We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.


Subject(s)
Evolution, Molecular , Hydra/genetics , Placozoa/genetics , Receptors, Fibroblast Growth Factor/genetics , Animals , Cnidaria/genetics , Protein Structure, Tertiary , Receptors, Fibroblast Growth Factor/chemistry
19.
Development ; 131(16): 4001-11, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15269170

ABSTRACT

Signalling through fibroblast growth factors (FGFR) is essential for proper morphogenesis in higher evolved triploblastic organisms. By screening for genes induced during morphogenesis in the diploblastic Hydra, we identified a receptor tyrosine kinase (kringelchen) with high similarity to FGFR tyrosine kinases. The gene is dynamically upregulated during budding, the asexual propagation of Hydra. Activation occurs in body regions, in which the intrinsic positional value changes. During tissue displacement in the early bud, kringelchen RNA is transiently present ubiquitously. A few hours later - coincident with the acquisition of organiser properties by the bud tip - a few cells in the apical tip express the gene strongly. About 20 hours after the onset of evagination, expression is switched on in a ring of cells surrounding the bud base, and shortly thereafter vanishes from the apical expression zone. The basal ring persists in the parent during tissue contraction and foot formation in the young polyp, until several hours after bud detachment. Inhibition of bud detachment by head regeneration results in severe distortion, disruption or even complete loss of the well-defined ring-like expression zone. Inhibition of FGFR signalling by SU5402 or, alternatively, inhibition of translation by phosphorothioate antisense oligonucleotides inhibited detachment of buds, indicating that, despite the dynamic expression pattern, the crucial phase for FGFR signalling in Hydra morphogenesis lies in bud detachment. Although Kringelchen groups with the FGFR family, it is not known whether this protein is able to bind FGFs, which have not been isolated from Hydra so far.


Subject(s)
Hydra/embryology , Protein-Tyrosine Kinases/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/physiology , Evolution, Molecular , Hydra/enzymology , Hydra/growth & development , Hydra/metabolism , Molecular Sequence Data , Phylogeny , Protein-Tyrosine Kinases/genetics , RNA, Messenger/metabolism , Receptors, Fibroblast Growth Factor/genetics , Regeneration/genetics , Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...